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What are the SOLID principles

Single Responsibility (SRP)
Open/Closed (OCP)
Liskov Substitution (LSP)
Interface Segregation (ISP)

Dependency Inversion (DIP)



Each class should have only
one reason to change

Single Responsibility Principle



Single Responsibility Principle

SRP

e Examples
e Bad: A class that logs, validates, and performs calculations

e Good: Separate logging, validation and calculation in difterent classes




Single Responsibility Principle

SRP

* Benefits
e High cohesion and selt explanatory
e Reduce code contlict
e |Introducing new features becomes easier

* Your class shouldnt be doing only one thing. Everything it does should be
very closely related.



Software entities should be open for
extension but closed for modification

Open/Closed Principle



Open/Closed Principle
OCP

e Examples
e Bad: Directly modifying existing code instead of extending it.

e Good: Use inheritance and interfaces

Class open
\ for
modificaton

Glass open
for
extension




Objects of a superclass should be replaceable
with objects of a subclass without affecting the
correctness of the program

Liskov Substitution Principle




Liskov Substitution Principle
SP
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LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction



No client should be forced to
depend on methods it does not use

Interface Segregation Principle




Interface Segregation Principle
ISP

] ¥*

* Created by thomasr on 16.05.15.

*/

public class Simulation implements MouseMotionListener, MouselListener, KeyListener {



Interface
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Segregation

ISP

@Override
public void mousePressed(final MouseEvent e) {
if (!go) {
int mx = e.getX() / Cell.size;
int my = e.getY() / Cell.size;

cells [mx] [my].setAlive(true);

@Override
public void mouseReleased(final MouseEvent e) {

@Override
public void mouseEntered(final MouseEvent e) {

@Override
public void mouseExited(final MouseEvent e) {

@Override
public void mouseDragged(final MouseEvent e) {

Principle



High-level classes should not depend
on low-level modules. Instead, both
should depend on abstraction

Dependency Inversion Principle



Dependency Inversion Principle
DIP

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?




Conclusion

RP keeps classes tocused and maintainable
CP allows tor flexibility and extensibility

SP ensures interchangeable use of subclasses

SP prevents unnecessary dependencies

P promotes decoupling for better reusability and testability



Any Questions?




Contact and Sources

* https://github.com/trothenbacher

* https://www.xing.com/profile/Thomas_Rothenbacher

e Sources:

e https://blog.ndepend.com/defense-solid-principles/

e https://www.coengoedegebure.com/solid-design-principles/

e https://chat.openai.com/
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