YASP

Yet Another SOLID Presentation

Thomas Rothenbacher - 04.03.2024



What are the SOLID principles

Single Responsibility (SRP)
Open/Closed (OCP)
Liskov Substitution (LSP)
Interface Segregation (ISP)

Dependency Inversion (DIP)



Each class should have only
one reason to change

Single Responsibility Principle



Single Responsibility Principle

SRP

e Examples
e Bad: A class that logs, validates, and performs calculations

e Good: Separate logging, validation and calculation in difterent classes




Single Responsibility Principle

SRP

* Benefits
e High cohesion and selt explanatory
e Reduce code contlict
e |Introducing new features becomes easier

* Your class shouldnt be doing only one thing. Everything it does should be
very closely related.



Software entities should be open for
extension but closed for modification

Open/Closed Principle



Open/Closed Principle
OCP

e Examples
e Bad: Directly modifying existing code instead of extending it.

e Good: Use inheritance and interfaces

Class open
\ for
modificaton

Glass open
for
extension




Objects of a superclass should be replaceable
with objects of a subclass without affecting the
correctness of the program

Liskov Substitution Principle




Liskov Substitution Principle
SP

~
N

@‘«' '
) {1 ﬂ.‘.\

d

-
“
(Pg
'
.

.'%,”
P gL

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction



No client should be forced to
depend on methods it does not use

Interface Segregation Principle




Interface Segregation Principle
ISP

] ¥*

* Created by thomasr on 16.05.15.

*/

public class Simulation implements MouseMotionListener, MouselListener, KeyListener {



Interface

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

Segregation

ISP

@Override
public void mousePressed(final MouseEvent e) {
if (!go) {
int mx = e.getX() / Cell.size;
int my = e.getY() / Cell.size;

cells [mx] [my].setAlive(true);

@Override
public void mouseReleased(final MouseEvent e) {

@Override
public void mouseEntered(final MouseEvent e) {

@Override
public void mouseExited(final MouseEvent e) {

@Override
public void mouseDragged(final MouseEvent e) {

Principle



High-level classes should not depend
on low-level modules. Instead, both
should depend on abstraction

Dependency Inversion Principle



Dependency Inversion Principle
DIP

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?




Conclusion

RP keeps classes tocused and maintainable
CP allows tor flexibility and extensibility

SP ensures interchangeable use of subclasses

SP prevents unnecessary dependencies

P promotes decoupling for better reusability and testability



Any Questions?




Contact and Sources

* https://github.com/trothenbacher

* https://www.xing.com/profile/Thomas_Rothenbacher

e Sources:

e https://blog.ndepend.com/defense-solid-principles/

e https://www.coengoedegebure.com/solid-design-principles/

e https://chat.openai.com/


https://github.com/trothenbacher
https://www.xing.com/profile/Thomas_Rothenbacher
https://blog.ndepend.com/defense-solid-principles/
https://www.coengoedegebure.com/solid-design-principles/

