
EMBRACING OBJECT CALISTHENICS
BEYOND GETTERS AND THE POWER OF "TELL, DON'T ASK"

Patrick Ronecker



OVERVIEW OF OBJECT CALISTHENICS

 Programming exercise

 Aimed at improving object-oriented design skills

 Focuses on writing clean & maintainable code

 At first follow the rules strictly to later break them

 Additional rule: Use TDD in combination for feedback

Rules:

1. Only one level of indentation per method

2. Don’t use the ELSE keyword

3. Wrap all primitives and strings (wrap primitiv types in 
classes)

4. First class collections (wrap collections in classes)

5. One dot per line

6. Don’t abbreviate

7. Keep all entities small

8. No classes with more than two instance variables

9. No getters/setters/properties

10. All classes must have state



EMBRACING RULE 9: NO GETTERS/SETTERS/PROPERTIES.

 Avoidance of Direct Access of Internals

 Encourage Behavior Methods

 Shift from Data-Centric to Behavior-Centric

 Forces you to really think object-oriented

(Network of entities that collaborate by passing messages)



BASIC EXAMPLE – AVOIDING GETTERS FOR TESTS

Instead of using getters: Use object equality:



GOING FURTHER –THE "TELL, DON'T ASK" PRINCIPLE

 Telling objects what to do, rather than asking them for data and 

acting upon that data externally

 shifts focus

o from procedural style (asking for data and then processing it)

o to object-oriented style (directing the object to perform an action)

 Aligns perfectly with the "No Getters/Setters" rule



"TELL, DON'T ASK": EXAMPLE



"TELL, DON'T ASK": BENEFITS & CHALLANGES

Benefits

 Enhances Encapsulation

 Reduces Coupling

 Improves Code Maintainability

 Promotes Clearer Intentions in Code

 Supports Better Abstraction

 Fosters More Robust Object Model

 Facilitates Testing

Challenges

 Learning Curve

 Conceptual Shift

 Increased Design Effort and potential Over-
Engineering

 Difficult to fit in an existing codebase



BEST PRACTICES & FINAL THOUGHTS

 There is nothing wrong with writing a getter method

 Use both approaches thoughtfully

 Avoid poor rationale

 Make a deliberate choice and document it

 There is No 'One-Size-Fits-All'-Solution

 Stay Open to New Styles or Alternatives



THANK YOU 

FOR YOUR 

ATTENTION

PATRICK.RONECKER@CSS.CH



SOURCES

 Agile Technical Practices Distilled by Pedro Moreira 

Santos, Marco Consolaro, Alessandro Di Gioia

 https://martinfowler.com/bliki/TellDontAsk.html

 https://martinfowler.com/bliki/GetterEradicator.html

https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/GetterEradicator.html

	Folie 1: Embracing Object Calisthenics Beyond Getters and the Power of "Tell, Don't Ask"
	Folie 2: Overview of Object Calisthenics
	Folie 3: Embracing Rule 9: No getters/setters/properties.
	Folie 4: Basic Example – Avoiding getters for tests
	Folie 5: Going Further – The "TEll, Don't ask" Principle
	Folie 6: "TEll, Don't ask": Example
	Folie 7: "TEll, Don't ask": Benefits & Challanges
	Folie 8: Best practices & FINAL THOUGHTS
	Folie 9: Thank you for your attention
	Folie 10: Sources

