
Architectural
team, Agile
and other stuff

Walter Moscatelli
walter.moscatelli@eoc.ch

What is a software
architect?

A software architect makes high-level design
choices and frames technical standards. This
might include tools, software coding standards,
or platforms to be used. To be effective, a
software architect needs broad (and deep)
technical knowledge to make good decisions.
However, technical knowledge isn’t enough.
They also have to have the soft skills to manage
projects and people. Let’s review the soft skills
and the hard skills needed.

what a software architect may do in a project

1

Interact with clients, product
managers, and developers to
envision, model, and design the
software solution. A software
architect advocates clarity and
transparency between the client and
the team.

2

Perform regular code reviews to
ensure the design quality and avoid
overly complicated structures. These
tasks usually involve hands-on work
on prototype development, code
contributions, or technological
assessment.

3

Collaborate and mentor. A software
architect’s skills should enable them
to help the development team and
enhance their knowledge.

And then

Determining what
technical standards

and tools are best for
a project or the

organization as a
whole. This will

involve self-directed
research and
evaluation.

Analyzing the goals of a
project, breaking it

down into discrete areas
of functionality that can

serve as the basis for
applications or

microservices, and
designing the whole
structure using UML.

Helping software
teams understand

the business
requirements and
criteria underlying

their current project.

Assigning specific
development tasks to
individual developers

or groups.

Performing QA
assessments on the
project codebase.

Writing code
themselves that will
make up part of the

project.

Software architect: soft skills needed
Leadership - Overseeing the
development of a project and
coordinating teams of developers to
meet design standards requires
significant leadership. Software
architects must be able to juggle the
needs and demands of projects and
teams.

Problem-solving & conflict
resolution - Managing and
coordinating all of the elements that
go into a successful application
project requires strong problem-
solving skills –both technical and
human.

Communication - Communication is
a key ingredient in any leadership
position. To get the best of teams,
software architects must clearly
explain the mission, deadlines, and
expectations.

Coaching & inspiration - If
expectations aren’t being met,
leaders have to coach and inspire
team members to achieve.

Organization - Since software
architects set the roadmap for
development, being organized is key.
Often large-scale and intricate UML
diagrams are necessary, which
requires a systematic and organized
way of thinking.

Prioritizing - Software architects
need to quickly prioritize tasks and
juggle team members' assignments
throughout a product’s
development.

Detailed thinking - In any
development project, there are a
significant number of details that
must be managed correctly. This
requires extreme attention to detail
to make sure the project code meets
objectives.

Creative thinking - The software
architect has to move teams forward
to accomplish a build regardless of
the obstacles. This takes the ability
to think creatively to find alternate
solutions or creative ways to solve
problems.

what it is not

• A software architect is not a product manager.
The former decides how the solution works
internally, while the latter studies external
factors such as market trends, demand for a
particular solution, the need for improvements
and competitor offers. An architect searches for
existing technical possibilities.

• Likewise, he is not even a project manager.
Although both share responsibility for the
success of a solution, however, the former is
responsible for code quality and technical risks,
while the latter takes care of everything else, i.e.
tasks associated with budget, scope and time.

Architectural team in EOC

Help teams build
software

architecture

Encourage team
communication and
maintain knowledge

Promote
communication

between operations
and development

Together with
business and

developers, create
the best solutions

Grow developers so
they can design

robust architectures

Explain and help to
use patterns and
recognize anti-

patterns

Help to use correctly
internal / external

tools

Design and manage
with operationals

team CI /CD pipeline

Error culture

Error culture is the handling of errors and
their consequences, within societies,
cultures and social systems. The term is
often used as a synonym for an
environment, where mistakes are allowed
and seen as a way to improve. Error culture
requires that errors happen and that they
are also corrected

1. Thinking All Mistakes Are Equal

• Not all errors are the same. It is safe to say that slip-ups should not
happen. We all agree on that. A company that allows such mentality
does not work efficiently, wastes resources and will be forced out of
the market sooner or later.

• However, some errors are unforeseeable, and for those, you should
not punish your employees. Forbidding any kind of mistake to
happen, nips every innovative idea in the bud by effectively limiting
your employees' motivation to get creative. You want creative and
innovative solutions, which makes risks and thereby mistakes
inevitable.

2. Preferential Treatment

• Randomness will kill any credibility of maintaining an error culture. All
mistakes, and especially mistakes that happen to people who are
higher up on the career ladder, must be treated consistently in the
same way as for the rest of the company.

• At ready, for instance, a co-founder missed an important deadline for
a new product. We convened a meeting with all the employees
involved and discussed what went wrong and why. Place emphasis on
letting management own up to their mistakes! This creates “role
models” for employees in promoting an uncomplicated approach to
mistakes and ensures a credible and fair error culture.

3. Sweeping It Under The Rug
• When a mistake happens, talk about it! Make people tackle

their mistakes instead of shaming them. Reward employees
who dare to be open about it and can show they learned
something.

• As a precondition for a healthy error culture, you need the right
feedback culture. Formats like “Bring gipfel” — where an open
discourse about everyone’s weekly mistakes and lowlights —
should be encouraged. Creating space for everyone at the
company to reflect will reduce the chance of repeating volatile
errors.

• All employees will benefit from hearing others’ mistakes,
learning from one another and growing closer as a team.
Ultimately, a culture of trust is achieved, which is the be-all-
end-all of an open feedback culture.

4. A Lack Of Trust

• As with personal relationships, trust in a company requires good
communication. For a culture of error to thrive, there needs to be a
culture of fairness, a culture of feedback and, finally, a culture of
trust. If these are missing, then a company cannot establish a proper
error culture.

• Open, honest and transparent communication is essential and can be
additionally promoted by those in leadership roles. Narrow-
mindedness and being resentful make this enormously difficult. The
courage to experiment, innovate and be creative must be supported,
and it should be clearly communicated that mistakes are allowed to
happen in the process. Flexibility and the willingness to accept change
are needed from both employees and management.

Don’t be a developer bully

• We should always put ourselves in another
person’s shoes and attempt to remain
professional and positive in our feedback to
others.

• Be professional, don't attack the person

• Words are Windows, or they're walls

Gracing the very first page of the book
‘Nonviolent Communication’ by Marshall
Rosenberg

Important
things to
consider

As a team we are noticing some work and
team cohesiveness patterns forming around
Pull Requests and Peer Reviews. We need to
focus on the positive aspects and the goals of
our team. Our goals are to provide working
product for our stakeholders and clients, not
to put each other down for some trivial
technical shortcoming. If there is a
shortcoming and you can provide a directional
change as the reviewer, do it, just show the
other developer the right way. If you are
receiving this constructive criticism, just make
the changes and move on.

We are Agile
……

So we don’t need Software architects

Extreme programming

All the contributors to an XP project sit together, members of one team.

There may be a manager, providing resources, handling external communication, coordinating
activities. None of these roles is necessarily the exclusive property of just one individual: Everyone
on an XP team contributes in any way that they can. The best teams have no specialists, only general
contributors with special skills.

The best architectures, requirements, and designs emerge from self-organizing teams. (Agile
Manifesto)

Responding to
Change

We are all empowered to propose
better ways of developing
software.

We follow change,we don’t have a
strategy

We don’t need
architect! Are
you sure ?

SaFe -> Architectural Runway

Intentional Architecture
Supports System Evolution

Emergent design

My vision

ARCHITECT AS FACILITATOR
TO SHARE SOFTWARE

ARCHITECTURE CULTURE

AT TEAM LEVEL AND
BETWEEN TEAMS

FOCUS ON BUSINESS-
OPTIMISED SOFTWARE

ARCHITECTURE

CREATE SOFTWARE
ARCHITECTURE

COMMUNITY / TEAM

TAKE TIME TO THINK
ABOUT GOOD
ARCHITECTURE

ENCOURAGE
COLLABORATIVE AND
POSITIVE MINDSET

Mindset

Architecture and Agile

Architectural team must :

• Help developers and their team take an active part in the architectural choices

• Create and update Architecture guidelines (api,security,network,etc.)

• Help the choice and growth of continuous integration and continuous delivery

• Manage Observability (it works on my computer)

• Force the team to wait to make architectural choices until it is mandatory(db,cache,micro
perimeter)

• Document the choices made.

Big responsability

Conway's law

[O]rganizations which design systems (in the broad sense used here) are constrained to
produce designs which are copies of the communication structures of these organizations.

— Melvin E. Conway, How Do Committees Invent?

“If you have four groups working on a compiler, you'll get a 4-pass compiler” Eric S.
Raymond

Every day in
EOC

“Every morning in EOC, a developer wakes up, he
knows he has to develop more than the fastest
Product Owner otherwise he will be fired. Every
morning in EOC, a Product Owner wakes up. He
knows he must writes stories faster than the slowest
developer, or it will cry. It doesn't matter whether
you're the Product Owner or a Developer when the
sun comes up, you'd better be working to your
maximum.”

Thank you
Questions ?

References

• Manifesto for Agile Software Development
https://agilemanifesto.org/

• How Do Committees Invent?
http://www.melconway.com/Home/Conways_Law.
html

• SAFe Scrum
https://scaledagileframework.com/safe-scrum/

• Christopher McDougall
https://www.goodreads.com/quotes/292417-
every-morning-in-africa-a-gazelle-wakes-up-it-
knows

https://agilemanifesto.org/
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
https://scaledagileframework.com/safe-scrum/

	Diapositiva 1: Architectural team, Agile and other stuff
	Diapositiva 2: What is a software architect?
	Diapositiva 3: what a software architect may do in a project
	Diapositiva 4: And then
	Diapositiva 5: Software architect: soft skills needed
	Diapositiva 6: what it is not
	Diapositiva 7: Architectural team in EOC
	Diapositiva 8
	Diapositiva 9: Error culture
	Diapositiva 10: 1. Thinking All Mistakes Are Equal
	Diapositiva 11: 2. Preferential Treatment
	Diapositiva 12: 3. Sweeping It Under The Rug
	Diapositiva 13: 4. A Lack Of Trust
	Diapositiva 14: Don’t be a developer bully
	Diapositiva 15: Important things to consider
	Diapositiva 16: We are Agile ……
	Diapositiva 17: Extreme programming
	Diapositiva 18: Responding to Change
	Diapositiva 19: We don’t need architect! Are you sure ?
	Diapositiva 20: My vision
	Diapositiva 21: Mindset
	Diapositiva 22
	Diapositiva 23: Architecture and Agile
	Diapositiva 24: Big responsability
	Diapositiva 25: Every day in EOC
	Diapositiva 26: Thank you
	Diapositiva 27: References

