
Test After
TAD : Test After Development

(how I have worked so far)

Walter Moscatelli

EOC IT Architect

Working code

• Write code

• Debug code

• Working code.

• I need some tests (Sonarqube,
Managment)

• Write tests for your code

The tests that you will write now will
try to validate your code.

Sample case

• Write function calculateSalary

• You try to remember what your code need to work

• You add different input to verify your salary

Test implementation not behaviour

TIPS : Writing the tests first forces you to think about the different
operating cases, you have to think about the borderline cases that
would put the code in difficulty. This leads to more robust code

My code works

Writing tests is not an additional task.

It is an inseparable part of the development
task for your feature.

But … if my code works I can forget to write
code.

Sometimes developers will just write dummy
tests which have no value, but somehow
increase the code coverage, and that’s even
worse than not writing the tests at all since it
gives a false feeling that the code is well
covered and protected, when it is actually not.

Why change ?

• I like my code

• Add complex test on complex
code

• Difficulty to add test so I need to
change my implementation

Why don’t developers use TDD in practice

Like everything that comes under the name of Agile, Test Driven
Development (TDD) is something that sounds great in theory. In
practice, it is unclear how to do it right. You are often told that if you
don’t like it, you are doing it wrong. It comes as no surprise that most
developers I’ve met could explain the benefits of using TDD while none
of them used it in their work. Not a single one.

How could something so advantageous is so unwelcome to developers?

Writing more test code
than implementation code

To test a “unit” of the implementation code, we
often write tests for all public methods and write
mocks for dependencies. Sometimes we make
private methods public because otherwise there is
no way to increase our code coverage. We create
test cases to cover as many different flows of the
implementation code as possible.

We end up being unproductive as we write more
test code than the implementation code. Tests will
not be released and delivered to users. It makes
more sense to skip tests as it seems to speed up
development

Red-Green-Refactor
encourages writing bad code

• Write a test that fails, or doesn’t even
compile

• Write just enough implementation code to
make the test pass

• Refactor the implementation code

This approach could be problematic,
especially to senior developers, because
this is what it really means in practice:

• Write a test that fails, or doesn’t even
compile

• Write bad code to make the test pass,
bad code that violates best practices

• Refactor the bad code and rewrite, not
refactor, the tests

• This destroys our values as developers.
It is almost a violation of programming
ethics, illegal and unprofessional.

Code coverage measurement

It is an old saying, “What gets measured gets done.” If quality is
measured by code coverage, developers will try every attempts to meet
that minimum code coverage requirement. If we are not allowed to
ship when code coverage is below 85%, we will end up adding more
and more tests, usually those easiest to create, to make it just over 85%
and no more. Ironically, most of these tests are trivial and without
much value to ensure quality.

It shifts developer to focus on finding ways to create low-quality tests
just to hit the minimum code coverage target.

Test everything

Developers tend to believe that
they need to test every “unit” of
their code — every public method.
This means the following problems
in such a TDD approach:

• More test code than the
implementation code

• Not easy to design tests before
the implementation is done

• Implementation refactoring
breaks existing tests

Kent Beck explained in his book, Test
Driven Development: By Example, that
unit tests in TDD should test for
behaviors, not implementations.

Developers often go too far trying to write
tests for everything. Seeing that his idea
has caused so much confusion and people
started to complain about their pain using
TDD, Kent Beck elaborated further how he
would use unit tests for.

https://stackoverflow.com/questions/153
234/how-deep-are-your-unit-
tests/153565#153565

Unit tests in TDD
should test for
behaviors, not
implementations

In other words, we should test the
behavior of our program, or the
“API” boundaries within our
program. A “unit” usually refers to
one meaningful behavior in our
software design, not software
implementation. This solves
problems above because
implementations change
frequently during development
but not behaviors.

Code
coverage
problem

For the last problem about code coverage
could be solved easily if we understand its
meaning behind — to help developers find
untested code. Code coverage has nothing to
do with code quality, which can be proven
statistically. The percentage simply means
nothing. The meaningful part of a coverage
report is that it tells us what code is not yet
tested and it could be buggy potentially.
Again, Kent Beck would only test the code that
might be buggy.

TDD as a habit

• Unit testing, and a lot of other Agile terminology, is like going to
the gym. You know it is good for you, all the arguments make
sense, so you start working out. You are so motivated initially,
which is great, but after a few days of exercise, you start to
rethink if it is worth the effort. You are spending an hour a day
to change your clothes and run like a hamster. Yet you are not
sure if you are really getting anything other than sore legs and
arms.

• Then, after a week or two, just as the soreness is about to go
away, a project deadline beings approaching. You need to spend
every waking hour trying to get meaningful work done, so you
cut out irrelevant stuff, like going to the gym. Now the deadline
is over, but you fall out of the habit. If you manage to make it
back to the gym at all, you feel just as sore as you were the first
time you went.

• You do some reading and observe others, to see if you are doing
something wrong. You being to feel a bit confused about why
those happy people praising the virtues of exercise. You realize
that you don’t have a lot in common. They don’t have to walk 15
minutes out of the way to the gym; there is one in their building.
They don’t have to argue with anybody about the benefits of
exercise; it is just something everybody does. When a project
deadline approaches, no one would tell them that exercise is
unnecessary, just as your boss would not ask you to stop eating.

Conclusion

Many of the coding issues we experience on a daily
basis can be avoided if we will practice TDD more.
I’m not saying that the transition should be binary,
this or that, but I hope that what I’ve written here
will help you insist a bit more (even in that inner
debate you’re having with yourself) on the quality
which you would like to write your code in.

	Diapositiva 1: Test After
	Diapositiva 2: Working code
	Diapositiva 3: Sample case
	Diapositiva 4: My code works
	Diapositiva 5: Why change ?
	Diapositiva 6: Why don’t developers use TDD in practice
	Diapositiva 7: Writing more test code than implementation code
	Diapositiva 8: Red-Green-Refactor encourages writing bad code
	Diapositiva 9
	Diapositiva 10: Code coverage measurement
	Diapositiva 11: Test everything
	Diapositiva 12
	Diapositiva 13: Unit tests in TDD should test for behaviors, not implementations
	Diapositiva 14: Code coverage problem
	Diapositiva 15: TDD as a habit
	Diapositiva 16: Conclusion

