
Looking Back
Luiza da Silva

01-06-2023



Technical Practices

•TECHNICAL DEBT (accidental or intentional)
Why do software 

projects fail again and 
again?

•Technical Feedback Practice
•Test Driven Development

•Technical Design Practices
•Refactoring
•Simple Design

We need to address 
accidental complexity or
tech debt as it emerges 

(or as it is found)



TDD – Start with the Tests

Write test before 
implementation, test 
one behavior per test

•Test small units
•Bottom-up
•Limited mocking
•Well suited for legacy code

Classic School TDD

•Emphasis on end-to-end, start with Acceptance Testing (ATDD)
•Top-down
•Extensive Mocking (aka Test Doubles)
•Communication tool for between developers, testers and stakeholders

Outside-In TDD

Transformation Priority 
Premise



Simple Design
TDD and DRY is not enough! We need some 
help with the design

Object calisthenics
1. Only one level of indentation per method

2. Don’t use the ELSE keyword

3. Wrap all primitives and strings (wrap primitive types in 
classes)

4. First class collections (wrap collections in classes)

5. One dot per line

6. Don’t abbreviate

7. Keep all entities small

8. No classes with more than two instance variables

9. No getters/setters/properties

10. All classes must have state



Refactoring

• Change design without changing behavior

• Find and shape abstractions

• Stay green while refactoring

• Don’t change production code that is not 
covered by tests

• Learn the shortcuts of your IDE

• Commit often

• Refactor for readability before design

• Parallel Change (Expand, Migrate and 
Contract



Simple Design 
and Refactoring
Code Smells and Refactoring



Simple Design

Core Principles
•Four rules of simple design

Passes tests
Reveals intention
No duplication
Fewest Elements

• SOLID++
Single Responsibility
Open/Closed
Liskov Substitution
Interface Segregration
Dependency Inversion
Balanced Abstraction
Least Astonishment (WTF)

Cohesion - Maximize

Coupling - Minimize

Connascence - Optimize



Connascence



Outside-In TDD: Test 
Doubles

• Stub/Fake

• Mock/Spy

• Command-Query Separation
• Command – modify state but does not return it

• Use Mock/Spy in Assert part
• Query – returns state but does not modify it

• Use Stub/Fake in Arrange part

• Guidelines
• Only for classes we own
• Verify as little as possible in a test
• Don’t use test doubles for isolated objects
• Don’t add behavior inside test doubles
• Only use test doubles for immediate neighbors
• Same class can act both as stub and mock



Beyond Design

• Outside-In Mindset

• Onion Architecture

• Modular, loosely coupled architecture

• Business-first view

• YAGNI 

• Focus on public interfaces => minimizes entropy

• Encourages readability 1. Define Acceptance Test
2. Make Acceptance Test FAIL outer loop
3. Make Acceptance Test PASS inner loop



Summary
• We now have the tools to start a different software journey
• What are we waiting for?





Thank you!

Luiza Helena da Silva
luizahs@hotmail.com


