S

aaaaaaaaaaaa
0000000000

Time
pressure

Longer to

implement / Less tests
new fea’fu

Technical Practices uz/‘)

More
garbage Less refactor

Why do software
projects fail again and
again?

¢ TECHNICAL DEBT (accidental or intentional)

Vye need to addr(?ss * Technical Feedback Practice
accidental complexity or BRAEDIUDHEERLE:
tECh debt as it €merges * Technical Design Practices
(or as it is found) * Refactoring

¢ Simple Design

I[DONT|NEED/DEBUG/MY CODE

REFACTOR
Improve code

TDD — Start with the Tests

while passing
the test

Write test before
implementation, test
one behavior per test

eTest small units
*Bottom-up

eLimited mocking

eWell suited for legacy code

Classic School TDD

eEmphasis on end-to-end, start with Acceptance Testing (ATDD)
eTop-down

eExtensive Mocking (aka Test Doubles)

eCommunication tool for between developers, testers and stakeholders

Outside-In TDD

Transformation Start code End code
o o q = nil [return] nil
Transformation Priority N comsant e i feurn] 4

[return] “1”

[return] “17 + “2”
[return] argument
[return] argument

[return] “17 + “2”

[return] argument

[return] min(max(0, argument), 10)
if(condition) [return] 1 else [return] 0

Premise

Statement -> statements
Unconditional -> conditional

#
1
2
3
4 Constant -> scalar
5
6
7
8

Scalar - array dog [dog, cat]
Array -> container [dog, cat]
9 Statement -> tail recursion

a+b a + recursion

10 If-> loop
11 Statement -> recursion

)

a + recursion
today ~ birth
day

recursion
CalculateBirthDate()
var Day = 10; Day = 11;

12 Expression -> function
13 Variable -> mutation

= TRIANGULATION

WRITE A TEST

TEST FAILING
FOR THE RIGHT
REASON?

'WRITE THE SIMPLEST CODE
THAT CAN WORK

- DEGREES OF FREEDOM
-NAMING
- START FROM THE ASSERTION
RED
Write a
failing test
- FAKEIT
- 0BVIOUS (PP)
GREEN
Write just
enough code to
« pass the test
~ DUPLICATION
Red, Green, Refactor S RULEGRTHREE

DRY
Don’t

Repeat

Yourself

RED
NEXT Write a failing
ACCEPTANCE Acceptance
TEST test

ACCEPTANCE
TESTS
LOOP

GREEN
Until the
feature is
complete

CAN ITBE
SIMPLER?

YES

DO ALL TESTS

NO
{try again option)

NO
(give up option)

PASS?

,VFS
¥

commit

Y

UNIT
TESTS

Loor

REFACTOR B |

V4

Simple Design

TDD and DRY is not enough! We need some
help with the design

Object calisthenics

1. Only one level of indentation per method
2. Don’t use the ELSE keyword

3. Wrap all primitives and strings (wrap primitive types in
classes)

First class collections (wrap collections in classes)

One dot per line

4

5

6. Don’t abbreviate
7 Keep all entities small

8 No classes with more than two instance variables
9 No getters/setters/properties

10. All classes must have state

- TRIANGULATION

- DEGREES OF FREEDOM

- NAMING

- START FROM THE ASSERTION

- FAKE IT
- OBVIOUS IMPLEMENTATION (TPP)

- DUPLICATION
- RULE OF THREE
- OBJECT CALISTHENICS

T
R

TEST FAILING
FOR THE RIGHT
REASON?

WRITE THE SIMPLEST CODE
THAT CAN WORK

ALL TESTS PASS?

| YES

 owwr |
'

CANIT BE
SIMPLER?

YES

[REFACTOR

}‘7

NO
(try again option)

DO ALL TESTS

NO
(give up option)

PASS?

YES

[commiIT

Refactoring

* Change design without changing behavior

* Find and shape abstractions
» Stay green while refactoring

* Don’t change production code that is not
Covered by testS Coming from

Write a
new failing

test
ROLLBACK \

when stuck
RED

Change code,
breaking tests

* Parallel Change (Expand, Migrate and ‘"ii.’lﬁlf?w
Contract

GREEN

* Learn the shortcuts of your IDE

¢ Commit often

» Refactor for readability before design

Extended TDD cycle: the Refactor cycle

SPENDS HOURS
REMOVING'/ACODE SMELL

= ‘ wey
ADDS ANOTHER BUNCH|
\OF SMELLS IN THE PROGESS

- DEGREES OF FREEDOM WRITE A TEST
“NAMING
START FROM THE ASSERTION
TEST FAILING
v WRITE THE SIMPLEST CODE
CAN WORK
DuPLCATION AT
RULE OF THREE ol
~OBIECT CALTHENICS
- CODE SMELLS
ves
no ~o
ftryagain option) | (give p aption)

Switch Statements OOA Inappropriate Intimacy COU Large Class BLO

Replace Conditional with Polymorphism Move Method Extract Class

Replace Type Code with Subclasses Move Field Extract Subclass

Replace Type Code with State/Strategy Bxract Class Extract Interface

Move Accumulation to Visitor Hide Delegate Replace Data Value with Object

Replace Conditional Disp: Replace Conditional Disp: ommand
Replace Parameter with Explicit Methods. Replace Implicit Language with Interpreter
Introduce Null Object Replace State-Altering Conditionals with State
Primitive Obsession BL0 Duplicated Code Long Method BLO

Replace Data Value with Object Chain Constructors Extract Method

Encapsulate Composite with Builder Bxtract Composite Compose Method

Introduce Parameter Object Extract Method Introduce Parameter Object

Extract Class Extract Class Move Accumulation to Collecting Parameter
Move Embelishment to Decorator Form Template Method Move Accumulation to Visitor

Replace Conditional Logic with Strategy
Replace Impiicit Language with Interpreter

Introduce Null Object

Decompose Conditional
Preserve Whole Object

Replace Implici Tree with Comy Pull Up Method Replace Conditional Dispatcher with Command
Replace State-Altering Conditionals with State | Pull Up Field Replace Conditional Logic with Strategy
Replace Type Code with Class Algorith i
Replace Type Code with State/Strategy Adapter Replace Temp with Query
Replace Type Code with Subclasses
Replace Array With Object
Divergent Change CHP WP v COU
Extract Class Move Method Extract Method

Move Field Move Method

Inline Class Move field
Tong Parameter List BLO a Glumps L0 Parallel Inheritance Hierarchies CHP
Replace Parameter with Method Extract Class Move Method
Introduce Parameter Object Preserve Whole Object Move Field

Preserve Whole Object

Introduce Parameter Object

Middle Man COU

Data Class

Message Chains COU

Remove Middie Man Move Method Hide Delegate
Inline Method Encapsulate Field Extract Method
Replace Deleg: Encapsulate Collection Move Method
Speculative Generality Temporary Field 0OA Lazy Class
Collapse Hierarchy Extract Class Collapse Hierarchy
Rename Meti Introduce Null Object Inline Class.
Remove Parameter
Inline Class
Refused Bequest 0OA fass COU
Push Down Field Interfaces 00A Introduce Foreign Method
Push Down Method Y
Move Method

Comments Dead Code
Rename Method

tethod
Introduce

Object calisthenics violation

Refactor code smells table

BLO - Bloater, CHP — Change preventer, COU — Coupler, DIS — Dispensable, OOA — Object
Orientation Abuser

Code smells consequence

Only one level of indentation per method
Don’t use the ELSE keyword
Wrap all primitives and strings

First class collections

One dot per line

Don’t abbreviate

Keep all entities small

No classes with more than two instance variables
No getters/setters/properties

All classes must have state, no static methods, no
utility classes

Long Method

Long Method / Duplicated Code

Primitive Obsession / Duplicated Code / Shotgun
Surgery

Divergent Change / Large Class

Message Chains

NA

Large Class / Long Method / Long Parameter List
Large Class

NA

Lazy Class / Middle Man / Feature Envy

Simple Design
and Refactoring

Code Smells and Refactoring

Simple Design

Core Principles

eFour rules of simple design
Passes tests
Reveals intention
No duplication
Fewest Elements
Connascence (mostly low strengths)
*SOLID++
Single Responsibility
.\ ’. .__ Open/Closed
r_ i _‘t Liskov Substitution
.ﬂ "" Interface Segregration
Dependency Inversion
Balanced Abstraction
Low coupling Least Astonishment (WTF)

High cohesion
Cohesion - Maximize

Coupling - Minimize

Connascence - Optimize

Connascence

Strong

Dynamic
(discoverable
only at runtime)

Position > \
@ S > \ Static

Meaning (Convention) > (discoverable by

visually

code)

Weak

Outside-In TDD: Test 70 USE MOCKS O STUBS

Doubles

e Stub/Fake
* Mock/Spy

OR IF 1 EVEN KNOW,THE DIFFERENCE

* Command-Query Separation
* Command — modify state but does not return it

* Use Mock/Spy in Assert part . . I 15 9
* Query —returns state but does not modify it nn vo “ M 0c Kl N G M E E
<
|

e Use Stub/Fake in Arrange part
* Guidelines
* Only for classes we own : {
* \Verify as little as possible in a test : * ‘t
* Don’t use test doubles for isolated objects &
¢ Don’t add behavior inside test doubles “@.'*.ﬁ -
L, AR .

* Only use test doubles for immediate neighbors
* Same class can act both as stub and mock »

Target Interface
& > >

Delivery [1’6'6
Infrastructure

Beyond Design e

| DIRECTION OF DEPENDENCY

WE SHl]lllIl GHH\TE?A‘WALLTIJ I(EEI'
THEBUGS IllIT
/A

e Qutside-In Mindset

[Application

) E makeameme.or
Business Logic]

[Fagades and Adapters]

Onion Architecture

[External Systems, End Users] RED

" rite a failin
ACCEPTANCE V:ctceptanceg \
. TEST test
* Modular, loosely coupled architecture
i H H ACCEPTANCE / sl
* Business-first view o I?Ji
LOOP
* YAGNI
GREEN /
. Untilth.e
* Focus on public interfaces => minimizes entropy i
[]

Encourages readability 1. Define Acceptance Test

2. Make Acceptance Test FAIL outer loop
3. Make Acceptance Test PASS inner loop

Summary

* We now have the tools to start a different software journey
* What are we waiting for?

Ok I'm up! Let's do this

Questions?

Thank you!

