
Exploring the Inside-Out and 
Outside-In Approaches

Achieving Optimal Balance

Indumathi Chinnaswamy

Flying module - Presentation day
Date: 01.06.2023





Introduction

• Importance of software development approaches

• Maintainable and customizable

• Choose the right approach



Inside-Out Approach

• Starts with the domain entity level (bottom-up).

• Clear structure from components to the system.

• Comprehensive test coverage from the beginning.

• Facilitates iterative development and refactoring.

• Reusability across different clients

• Require significant upfront planning and design.



Clean/Onion/Hexagonal Architecture



Clean/Onion/Hexagonal Architecture



Clean/Onion/Hexagonal Architecture



Clean/Onion/Hexagonal Architecture





Outside-In Approach

• Top-down or "mockist TDD"

• User experience and external interfaces

• Rapid prototyping and iterations

• Mock dependencies and implement actual functionality.

• Flexibility for customization

• Early validation of high-level interactions and integration

• Clear understanding of system dependencies.

• Alignment with the "You Ain't Gonna Need It" (YAGNI) principle.



Clean/Onion/Hexagonal Architecture



Clean/Onion/Hexagonal Architecture



Clean/Onion/Hexagonal Architecture



Clean/Onion/Hexagonal Architecture







Combining the Approaches

• Integrates Inside-Out and Outside-In.

• Situations where the combined approach is beneficial:

• Large enterprise solutions with existing architectural designs.

• Uncertain requirements or evolving codebase.

• Projects requiring a balance between high-level interactions and component-
level details.



Clean/Onion/Hexagonal Architecture



Clean/Onion/Hexagonal Architecture



Clean/Onion/Hexagonal Architecture



Clean/Onion/Hexagonal Architecture



Choosing the Right Approach

• Select the appropriate approach based on project context

• Nature of the project, team expertise, and available resources.

• Level of certainty in requirements and system architecture.

• Adaptable and flexible.



Conclusion

• Inside-Out approach for clean core domain and reusability

• Outside-In approach for user-centered design and customization

• Combine both approaches for a comprehensive architecture

• Understand project requirements when choosing an approach.



Reference

• Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). "Design Patterns: Elements of Reusable Object-Oriented Software." Addison-Wesley Professional.

• Offers design patterns for building modular, maintainable, and customizable software solutions.

• Patel, S. (2020). "Maintainability vs. Customizability: Finding the Right Balance in Software Development." [Online Article].

• Explores the trade-off between maintainability and customizability in software development projects.

• Johnson, L. (2019). "Inside-Out vs. Outside-In Development: Choosing the Right Approach." [Online Article].

• Provides insights into the characteristics and benefits of both Inside-Out and Outside-In approaches.

• Myers, J. (2022). "Combining Inside-Out and Outside-In Approaches for Robust Software Solutions."

• Presents a case study on how a combined approach can create adaptable and user-centric software solutions.

• Smith, J. (2018). "Choosing the Right Software Development Approach." [Online Article].

• Discusses factors to consider when selecting a software development approach.






