Test Driven
Development

Connascence and Test Doubles

Rune Holen / Bouvet

Walk Run Fly

Walk

Walking:
* Write red test case
* Code until green
* Refactor

RED

Write a
failing test

REFACTOR
Improve code
while passing

GREEN
Write just
enough code to

the test pass the test

SOLID principles:
A Single Responsibility

Open-Closed

Liskov substitution

Interface segregation
Code smells, like:
+ Primitive obsession Dependency lnversion

Run

e Large class/method

* Feature Envy

L * Connascence

Fly * Test Doubles
e Qutside-in Mindset (onion)

Connascence:

Locality

Strong

_ Dynamic

@ Execution order

@ Position >

@ Algorithm >
Static
@ Meaning (Convention) > (discoverable by
visually
code)

weak @ e

/ ﬁ
Lesson 1 TRAINING PROGRAMME ALCOR
f) academy

-- PL/SQL Procedure to send emgils
=] PROCEDURE send_email(

(ST

p_email_ address IN VARCHARZ,
4 p_message IN WARCHARZ
=,)
6 15
7 = -- Code to interact with the actual email service
a _-

= ®

11 =« EBEGIN
12 — -- Code to send the email

Test Doubles

-- Mock object to simulate the email service behavior
CREATE OR REPLACE TYPE email_service_mock AS OBJECT

¢
21 -- Mock method to simulate sending emails
22 MEMBER FUNCTION send_email(
I k d Ch tG PT t 23 ! p_email address IN VARCHARZ,
aS e a O 24 p_message IN WARCHARZ
25)} RETURN NUMBER
'H
generate a test .
28
29 -- Implement the mock method
d O u b I e exa m p I e fo r I CREATE OR REPLACE TYPE BODY email_ service_mock AS
31 H MEMBER FUNCTION send_email(
32 : p_email_address 1IN WARCHARZ,
H p_message IN WARCHARZ
=)} RETURN NUMBER
Is

© BEGIM
E -- Simulate the hehavicri of the email service

-- For testing purposes, we can log the email details instead of sending an actual email

INSERT INTO email log(email_ address, message)

VALUES(p_email_address, p_message);

© RETURN 1; -- Return a success status code

a3 + L END;

a4 END;

45 /

-- Testing the send_email procedure using the mock object
8 DECLARE
. a -- Instantiate the mock object
The fOI IOWI n eXa m |e ShOWS a @ email_svec_mock email serwvice mock;
g p 1 [JBEGIN

2 -- Set up any necessary test data

useful framework for a mocked
version of send_email(), which
logs the email instead of
sending via an email service.

-- Replace the actual email service with the mock object
email svc_mock := email serwvice_mock();

[V T VL IY, T, BT, R
oo 4

o

-- Call the send email procedure with the mock object
send_email(p_email address => 'testf@example.com', p_message => 'This is a test email', email_swvc => email_ swvc_mock);

-- Perform any necessary assertions or verifications

L EnD;

I Target Interface
Delivery
. Infrastructure
Onion

Application

Architecture Services

[Application
Business Logic]

N Facades and Adapters
Accessibility e BIER]

Outside -> inside [External Systems, End Users]

N

TRAINING PROGRAMME ALCOR

academy

Onion

Architecture

Exercise:
Stock Portfolio

Target Interfaces

Application Services

|Princer Partfolio
printing

- Ve quer;) B
= .
TE—
/ Domain Entities

Portfolio Stock

Service - Portfolio
buy/sell
2

I
J

e e

Bl as
SELECT

|
W5

(7]

RPAD(TO_CHAR({report_date, 'yyyymmdd'), 8) AS report_date,
company_id,
sales_office,
d_s_year,

d_s_no,

deal_no,
line_item_nao,
sap_line_item_nao,
deal_key,
type_of_trade,
order_no,
customer,

grade,

delivery year,
delivery_mth,
der_del_period,

=
WOooa

L3 I U WV % I S v

(s3]

)

woca

(2]

Missing End-to-End test

Descriptive

5 delivery type,

3 RPAD(TO_CHAR(bl date, 'yyyymmdd'), 8) &S bl date, IEIEIMENEER
2 sale_prch_ind, be shortened
5 volume,

6 disp_wolume_unit, to be less than
/ volume_bbl, 30 characters

contract_price,

deal amount,

deal amount_excl_oc,
total pnl,
RPAD(TO_CHAR(placed_to_sap, 'yyyymmdd'), 8) A aced_to_sap,

deal amount placed,

as d1_am_ex_prov,

deal currency,

RPAD(TO_CHAR(acc_placed_date, 'yyyymmdd'), 8) AS acc_placed_date,
rats_auto_accruals,

|\ I LY I N e N e I S T O = I LS
L I Y [I T S e i

strategy_vear,
strategy_no,
strategy_descripticon,

[X=l e]

An Oracle view has been provided as interface

=}

for an external system (SAP) to access a closs 1,
report. View serves as a contract between the class3,

business_unit,
business_area,
trading_area,
profit_area,

two systems, and was successfully released —
based on acceptance test.

=] T

[0 I I I I T R R Y N - N S A Y
[V, I T

[T=l e]

internal_ind,
mitd_ytd_ind
FROM ratsdba.wvw_deal report;

o
(2]

o
[

¥
&

Questions?

rune.holen@bouvet.no

	Slide 1: Test Driven Development
	Slide 2
	Slide 3
	Slide 4: SOLID principles: Single Responsibility Open-Closed Liskov substitution Interface segregation Dependency Inversion
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

