
How Object 
Calisthenics 
Implement Object 
Oriented Principles

Sean Jennings



What are Object Calisthenics?

• A set of rules focused on 
maintainability, readability, 
testability, and 
comprehensibility of your code 
at a low level.

• The practical implementation of 
OO principles at a low level

• 10 rules each with a suggestion 
for code form



What are OO Principles?

In short

• A guide to responsibly using the 
pillars of OOP: encapsulation, 
inheritance, polymorphism and 
abstraction

• A description of qualities 
required for reusable, flexible, 
extensible and maintainable 
code at a higher level

• Encapsulate what varies

• Program to interfaces, not 
implementations

• Classes should be open for 
extension, closed for modification

• A class should only have one 
reason to change

!In short



Encapsulate what varies

• Segregates frequently changing 
code

• Allows you to extend code 
without affecting unchanging 
code

Object Calisthenics:

• 1. Only one level of indentation 
per method. 

• 2. Don’t use the ELSE keyword. 

• 4. First class collections (wrap 
collections in classes). 

• 5. One dot per line. 

• 7. Keep all entities small. 

• 8. No classes with more than two 
instance variables. 



Encapsulate what varies

public class DogWalker
{

private Speed speed;
private SpeedCalculator speedCalculator;

public void WalkDog(Dog dog)
{

speed = speedCalculator.CalculateSpeed(dog);
}

}

public class DogWalker
{

private Speed speed;

public Speed WalkDog(Dog dog)
{

if (dog.Breed() == DogBreed.GermanShephard)
{

return Speed.Fast;
}
else if (dog.Breed() == DogBreed.Poodle)
{

return Speed.Medium;
}
else if (dog.Breed() == DogBreed.Pug)
{

return Speed.Slow;
}
else
{

return Speed.Slow;
}

}
}



Program to interfaces, not implementations

• Allows code to change itself at 
runtime

• Reduces coupling and increases 
code flexibility

Object Calisthenics:

• 3. Wrap all primitives and strings 
(wrap primitive types in classes). 

• 4. First class collections (wrap 
collections in classes). 

• 5. One dot per line. 

• 9. No getters/setters/properties.

• 10. All classes must have state. 



Program to interfaces, not implementations

public class TicTacToeWithImplementation
{

private char[,] board = new char[3, 3];

public void Play(char player, int x, int y)
{

// if valid move
board[x, y] = player;

}
}

public class TicTacToeGameWithInterface
{

private IBoard _board;

public TicTacToeGameWithInterface()
{

_board = new Board();
}

public void Play(Player player, Position position)
{

_board.Play(player, position);
}

}



Classes should be open for extension, closed for 
modification

• We allow extension of methods to 
add new behaviour

• We don’t allow modification of 
existing code which may 
introduce bugs

Object Calisthenics:

• 3. Wrap all primitives and strings 
(wrap primitive types in classes). 

• 4. First class collections (wrap 
collections in classes). 

• 9. No getters/setters/properties. 

• 10. All classes must have state. 



Classes should be open for extension, closed for 
modification

public class NuclearReactor
{

public int Temperature { get; set; } = 1100;

public void CalculateTemperature()
{

// logic to calculate temperature
Shutdown();

}

private void Shutdown()
{

if (Temperature > 1000)
{

throw new Exception("Reactor failure");
}

}
}

public class NuclearReactor
{

private readonly int _temperature;

public void CalculateTemperature()
{

// logic to calculate temperature
Shutdown();

}

private void Shutdown()
{

if (_temperature > 1000)
{

throw new Exception("Reactor failure");
}
AdditionalShutdownLogic();

}

protected virtual void AdditionalShutdownLogic() {}
}



A class should only have one reason to change

• Change increases maintenance 
and development cost

• Separating responsibility removes 
reasons for changing

Object Calisthenics:

• All of them!



A class should only have one reason to change

public class Engine
{

private int FuelLevel { get; set; }
private int EngineSpeed { get; set; }
private int magicalNumber = 2;
private int temp { get; set; }

public void Start()
{

if (FuelLevel < 10)
{

// process low fuel injection
}
else
{

// process high fuel injection
}

if (temp > 100)
{

EngineSpeed = FuelLevel * 10 / magicalNumber;
if (FuelLevel < 10)
{

// process high temp low fuel injection
}

}
}

}

public class Engine
{

private EngineProcessor _engineProcessor;
public void Start()
{

_engineProcessor.Start();
// other related logic

}
}



Where next?
• Object calisthenics provide a 

guide to clean code at low level

• Object calisthenics don’t 
provide guide to code at high 
level

• Design patterns are high-level 
concepts that apply OO 
principles



QUESTIONS?



THANK YOU
Sean Jennings

sean.jennings@fdbhealth.com


