
Transformation 
Priority 
Premise



Transformation Priority Premise



“As the tests get more specific, the code gets more 

generic.”

Uncle Bob



What about 
Priority?

({} → null) no code at all → code that returns null

(null → constant)

(constant → constant+) a simple constant to a more complex constant

(constant → scalar) replacing a constant with a variable or an argument

(statement → statements) adding more unconditional statements.

(unconditional → if) splitting the execution path

(scalar → array)

(array → container)

(statement → tail-recursion)

(if → while)

(statement → non-tail-recursion)

(expression → function) replacing an expression with a function or algorithm

(variable → assignment) replacing the value of a variable



Remember 
it’s a 
Premise, not 
a Rule!

It’s a guide, not a hard and 
fast rule

Not all steps have to be 
employed

Sometimes we might visit 
steps that are lower in 
priority first



Null transformation
Write a test to call a method that does not exist 
yet. Create the method and have it return null

Null -> Constant
Replace the null return value with a constant



Constant -> Constant+
Replace the constant with a more complex constant:

Constant -> Scalar
Replace constants with variables:



Statement -> Statements

Add unconditional statements

Unconditional => if
Split the execution path:



Statement -> Array
Use an array to store the data

Array -> Container
Simplify the implementation by 

using a container such as a 

dictionary to match input key to 

output value



If -> While
we need to jump ahead …. so let’s say we are now here:



If -> While
we need to jump ahead …. so let’s say we are now here:

We can see a lot of duplication; 
each condition is based on a 
key from the dictionary



If -> While
We can evolve from the repeated if statements to a loop, based on the dictionary key:

:



Expression -> Function
Jumping ahead again:



Expression -> Function
Jumping ahead again:

Let’s extract a method from this



Expression -> Function
We now have:



Variable -> Assignment
mutate a variable, i.e. change its value



Summary


