
SOLID
Principles



What is SOLID?

SOLID is an acronym for five design principles in sw 
development:

Single Responsibility: A class should do one thing and 
hence a single reason to change.

Open - Closed: Open for extension and closed for 
modification

Liskov Substitution: Subclasses should be substitutable 
for their base classes

Interface Segregation: Keep interfaces separate. Clients 
should not be forced to implement a function they do 
not need.

Dependency Inversion: Classes should depend on 
interfaces or abstract classes instead of concrete 
classes and functions

Illustration is courtesy of BGL Tech: https://medium.com/bgl-tech/what-are-the-solid-design-principles-c61feff33685



Background

● The five design principles was first published 
by Robert C. Martin (Uncle Bob) in 2000 in his 
paper Design Principles and Design Patterns.

● Intention is to make Object Oriented designs 
more understandable, flexible, and 
maintainable.

● The SOLID acronym was introduced later, 
around 2004, by Michael Feathers



Single Responsibility

A Class should only have one responsibility and 
only one reason to change.

Why?

1. Testing – A class with one responsibility will 
have far fewer test cases.

2. Lower coupling – Less functionality in a single 
class will have fewer dependencies.

3. Organization – Smaller, well-organized classes 
are easier to search than monolithic ones.

Consider this book class



Single Responsibility (2)

Need a way of printing the content

Might be tempted to add method to the class.

Rather, we create a new class for this purpose:

We don’t do that!

Code examples based on Baeldung course : https://www.baeldung.com/solid-principles



Open - Closed

Classes should be open for extension but closed for 
modification..

Why?

In doing so, we stop ourselves from modifying 
existing code and causing potential new bugs in 
an otherwise happy application. (*)

(*) Not when fixing bugs in existing code



Liskov Substitution

If class A is a subtype of class B, we should be able 
to replace B with A without disrupting the behavior 
of our program.

Consider a Car interface that all cars should 
implement:



Liskov Substitution (2)

Implementing an Electric car does not have a 
gearbox. ElectricCar can therefore not implement 
changeGear()



Interface Segregation

Larger interfaces should be split into smaller ones.

Why?

we can ensure that implementing classes only 
need to be concerned about the methods that are 
of interest to them.

Let’s consider an interface for a BearKeeper:

While petting bears might seem fun, we might not want 
to do that. Better to segregate the interfaces:



Dependency Inversion

Refers to the decoupling of software modules. This 
way, instead of high-level modules depending on 
low-level modules, both will depend on 
abstractions.

Consider this class:

- tightly coupled with StandardKeyboard class

Dependency injection to enable Keyboard dependency. 
Modify also the StandardKeyboard for this.



Why not?

critisism



So What?

What is my conclusion?



Questions?



● Design Principles and Design Patterns (Robert C Martin): 
http://staff.cs.utu.fi/~jounsmed/doos_06/material/DesignPrinciplesAndPatterns.pdf

● Baeldung: https://www.baeldung.com/solid-principles
● SOLID design principles explained: 

https://medium.com/bgl-tech/what-are-the-solid-design-principles-c61feff33685
● SOLID Principle in Programming: Understand With Real Life Examples: 

https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
● Deconstructing SOLID (Ted Kaminski): https://www.tedinski.com/2019/04/02/solid-critique.html

References

http://staff.cs.utu.fi/~jounsmed/doos_06/material/DesignPrinciplesAndPatterns.pdf
https://www.baeldung.com/solid-principles
https://medium.com/bgl-tech/what-are-the-solid-design-principles-c61feff33685
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.tedinski.com/2019/04/02/solid-critique.html


Thank you

How to contact me:
sten.johnsen@bouvet.no
@stenjo on Twitter

mailto:sten.johnsen@bouvet.no

