
Untangle Your Legacy Codebase: 
From Spaghetti Code to 

Masterpiece in 6 Easy Steps!
Stay tuned!



Refactoring Legacy Code





Why?

• Easy understanding

• Maintainability

• Reduce the risk of bugs 🐛

• May improve performance





Step 1: Understanding the codebase

• Reviewing

• Identifying dependencies

• Interaction between components

• Analyzing behavior 



Step 2: Find areas for improvement

• Simplifying complex code

• Removing redundancy

• Restructure code



Step 3: Tests, tests, tests



Step 4: Refactoring

• Start refactoring

• Ensure tests are passing

• Behavior remains the same



Step 5: Test and validate

• Execute test suite

• Validate correct functionality

• Automatic and/or manual tests, depending on complexity



Step 6: Repeat



Conclusion

• Refactoring requires thought and understanding

• A comprehensive test suite

• Effort



Thanks for your attention!

Feel free to reach me at:

markus.reiss@betterask.erni

•

Sources:

• Title: Dall-E generated

• Why: https://imgflip.com/memegenerator/58542746/But-Why

• How: https://imgflip.com/memegenerator/44529090/Jackie-Chan-Confused

• Step 3: https://cupcakelogic.tumblr.com/post/124392369931/she-is-still-learning

• Step 6: https://quoteinvestigator.com/2017/03/23/same/

• Final Page: https://imgflip.com/memegenerator/Doge

https://imgflip.com/memegenerator/58542746/But-Why
https://imgflip.com/memegenerator/44529090/Jackie-Chan-Confused
https://cupcakelogic.tumblr.com/post/124392369931/she-is-still-learning
https://quoteinvestigator.com/2017/03/23/same/
https://imgflip.com/memegenerator/Doge

	Slide 1: Untangle Your Legacy Codebase: From Spaghetti Code to Masterpiece in 6 Easy Steps!
	Slide 2: Refactoring Legacy Code
	Slide 3
	Slide 4: Why?
	Slide 5
	Slide 6: Step 1: Understanding the codebase
	Slide 7: Step 2: Find areas for improvement
	Slide 8: Step 3: Tests, tests, tests
	Slide 9: Step 4: Refactoring
	Slide 10: Step 5: Test and validate
	Slide 11: Step 6: Repeat
	Slide 12: Conclusion
	Slide 13: Thanks for your attention!

