
Code Smells



Bloaters

 Large pieces of code accumulated over time



Large classes + Long Methods

How to observe?

 Class too long (50+ lines)

 Method too long (15+ lines)

Solution

 Extract methods into smaller classes based on 

responsibility

 Remove duplication

 Extract parts into smaller methods

 Decompose conditionals



Primitive Obsession

How to observe?

 Use of many primitive values instead of 

objects

Solution

 Move the primitives into their own class

 Keep the associated behavior separated in that 

class



Object-Orientation Abusers

 Incorrect application of object-oriented programming



Switch Statements

How to observe?

 Long Switch operator

 Multiple If statements

Solution

 Create interface/abstract class with subclasses 

that match each type/property that appears in 

the switch

 Instead of conditional, use polymorphism to 

call the method from the right subclass



Temporary Field

How to observe?

 Value used only in some circumstances

 Otherwise always null/unused

Solution

 Variable and code using extracted in separate 

class



Refused Bequest

How to observe?

 Subclass uses only some of the inherited 

methods

Solution

 Split up interface/parent class (interface 

segregation)

 Get rid of inheritance, create parent class 

object inside subclass and use needed methods



Alternative Classes with Different Interfaces

How to observe?

 2 classes have identical functionality, but 

different names and methods

Solution

 Know code base

 Get rid of duplication, move methods into one 

class, get rid of other

 If only partially identical, extract common 

methods into superclass, a make the existing 

classes its subclasses



Change Preventers

 If you make one change, you must make many changes in other places too



Divergent Change vs Shotgun Surgery

How to observe?

 Divergent change: Must change many 

unrelated methods when you make a change to 

a class

vs
 Shotgun surgery: If you change one thing, 

then you are required to make changes in other 

classes too

Solution

 Divergent change: Split up unrelated parts into 

different classes, combine related parts with 

inheritance

vs
 Shotgun surgery: Move responsibility to the 

same class



Couplers

 Code that creates excessive coupling between classes



Feature Envy + Inappropiate Intimacy

How to observe?

 Feature Envy: Method accesses the public 

fields and methods of another class more than 

its own

VS
 Inappropiate Intimacy: Method accesses the 

internal workings of the class

Solution

 Feature Envy: Method better suited to other 

class, should be moved

VS
 Inappropiate Intimacy: Make the methods and 

fields private, force our class to work only 

with accessible methods



What did I learn?

 Lots of different smells

 Many things to remember

 Many are obvious but a few are difficult to recognize



Sources

 Alcor Academy

 https://en.wikipedia.org/wiki/Code_smell

 https://sourcemaking.com/refactoring/smells

 https://www.shutterstock.com/ (photos)

https://en.wikipedia.org/wiki/Code_smell
https://sourcemaking.com/refactoring/smells
https://www.shutterstock.com/


Thank you for your attention !
Alexandru Chevul 

LINKEDIN: www.linkedin.com/in/alexandru-chevul-458697185

EMAIL: alexandru.chevul@betterask.erni


	Slide 1: Code Smells
	Slide 2: Bloaters
	Slide 3: Large classes + Long Methods
	Slide 4: Primitive Obsession
	Slide 5: Object-Orientation Abusers
	Slide 6: Switch Statements
	Slide 7: Temporary Field
	Slide 8: Refused Bequest
	Slide 9: Alternative Classes with Different Interfaces
	Slide 10: Change Preventers
	Slide 11: Divergent Change vs Shotgun Surgery
	Slide 12: Couplers
	Slide 13: Feature Envy + Inappropiate Intimacy
	Slide 14: What did I learn?
	Slide 15: Sources
	Slide 16: Thank you for your attention !

