
Code Smells



Bloaters

 Large pieces of code accumulated over time



Large classes + Long Methods

How to observe?

 Class too long (50+ lines)

 Method too long (15+ lines)

Solution

 Extract methods into smaller classes based on 

responsibility

 Remove duplication

 Extract parts into smaller methods

 Decompose conditionals



Primitive Obsession

How to observe?

 Use of many primitive values instead of 

objects

Solution

 Move the primitives into their own class

 Keep the associated behavior separated in that 

class



Object-Orientation Abusers

 Incorrect application of object-oriented programming



Switch Statements

How to observe?

 Long Switch operator

 Multiple If statements

Solution

 Create interface/abstract class with subclasses 

that match each type/property that appears in 

the switch

 Instead of conditional, use polymorphism to 

call the method from the right subclass



Temporary Field

How to observe?

 Value used only in some circumstances

 Otherwise always null/unused

Solution

 Variable and code using extracted in separate 

class



Refused Bequest

How to observe?

 Subclass uses only some of the inherited 

methods

Solution

 Split up interface/parent class (interface 

segregation)

 Get rid of inheritance, create parent class 

object inside subclass and use needed methods



Alternative Classes with Different Interfaces

How to observe?

 2 classes have identical functionality, but 

different names and methods

Solution

 Know code base

 Get rid of duplication, move methods into one 

class, get rid of other

 If only partially identical, extract common 

methods into superclass, a make the existing 

classes its subclasses



Change Preventers

 If you make one change, you must make many changes in other places too



Divergent Change vs Shotgun Surgery

How to observe?

 Divergent change: Must change many 

unrelated methods when you make a change to 

a class

vs
 Shotgun surgery: If you change one thing, 

then you are required to make changes in other 

classes too

Solution

 Divergent change: Split up unrelated parts into 

different classes, combine related parts with 

inheritance

vs
 Shotgun surgery: Move responsibility to the 

same class



Couplers

 Code that creates excessive coupling between classes



Feature Envy + Inappropiate Intimacy

How to observe?

 Feature Envy: Method accesses the public 

fields and methods of another class more than 

its own

VS
 Inappropiate Intimacy: Method accesses the 

internal workings of the class

Solution

 Feature Envy: Method better suited to other 

class, should be moved

VS
 Inappropiate Intimacy: Make the methods and 

fields private, force our class to work only 

with accessible methods



What did I learn?

 Lots of different smells

 Many things to remember

 Many are obvious but a few are difficult to recognize



Sources

 Alcor Academy

 https://en.wikipedia.org/wiki/Code_smell

 https://sourcemaking.com/refactoring/smells

 https://www.shutterstock.com/ (photos)

https://en.wikipedia.org/wiki/Code_smell
https://sourcemaking.com/refactoring/smells
https://www.shutterstock.com/


Thank you for your attention !
Alexandru Chevul 

LINKEDIN: www.linkedin.com/in/alexandru-chevul-458697185

EMAIL: alexandru.chevul@betterask.erni


	Slide 1: Code Smells
	Slide 2: Bloaters
	Slide 3: Large classes + Long Methods
	Slide 4: Primitive Obsession
	Slide 5: Object-Orientation Abusers
	Slide 6: Switch Statements
	Slide 7: Temporary Field
	Slide 8: Refused Bequest
	Slide 9: Alternative Classes with Different Interfaces
	Slide 10: Change Preventers
	Slide 11: Divergent Change vs Shotgun Surgery
	Slide 12: Couplers
	Slide 13: Feature Envy + Inappropiate Intimacy
	Slide 14: What did I learn?
	Slide 15: Sources
	Slide 16: Thank you for your attention !

