
TDD impressions

TDD. Yes, but what do we test
BEHAVIOUR not implementation

 2

Transformation Priority Premise

●

● Fake implementation →
Hardcode exactly the value.

●

● Triangulation with next test →
Use it on the way to a more generic solution until the implementation gets obvious. Go from one
dimension to another.

●

● Obvious implementation
●

 3

Code evolution

Transformation Starting code Final Code

1 {} → nil return nil

2 nil → constant return nil return “1”

3 constant → constant+ return “1” return “1” + “2”

4 constant → scalar return “1” + “2” return argument

5 statement → statements return argument return arguments

6 unconditional → conditional return arguments if(condition) return arguments

7 scalar → array dog [dog, cat]

8 array → container (map) [dog, cat] {dog = “DOG”, cat = “CAT”}

9 statement → recursion a + b a + recursion

10 conditional → loop if(condition) while(condition)

11 recursion → tail recursion a + recursion recursion

12 expression → function today - birthday calculateAge()

13 variable → mutation day int day = 10; day = 11;

14 switch case

 4

Parameterized tests

@ParameterizedTest
@CsvSource({
 "'1,\n2'",
 "'1\n,2'",
 "'1,,2'"
})
public void throw_exception_when_input_is_not_valid(String invalidInput) {
 Assertions.assertThrowsExactly(IllegalArgumentException.class, ()
 -> calculator.add(invalidInput));
}

 5

Object Calisthenics rules

●

●

● Wrap all primitives and strings
● So we have an explicit type with a name. The value control and access can be easily managed.
●

● Wrap all collections
● Collection specific behaviour is on a single place. The internal representation is not effected by

the rest.

 6

Limits of TDD

● Algorithms
● I tried to calculate all permutation of a set of chars and failed. ChatGPT helped me with the

algorithm. The written unit tests helped me to validate the code.

Efficiency (memory and cpu)
● The drawback of the obvious code can be reduces performance. Anyway, in most cases this

does not matter and is not worth the optimisation. (e.g. A map is less efficient than an array)

● Forget a fake implementation in the productive code
● It can happen that a fake implementation is forgotten in the code as we always commit after a

passing test.

● Start too fast with implementation. No big picture.
● More refactoring steps are needed because of intentionally wrong interface methods.

 7

Conclusion (so far)

● + Higher code readability
● + Confidence about functionality
● + Methods to solve complex challenges

(Baby steps, Triangulation)
● + Decreased code complexity
● + Encapsulated responsibility
● + Reduces noise
● - Slow process
● - Missing big picture

Thank you

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

