So, what's up
with TDD?

By Wilhelm Vold

* Qutline the specification of the feature
* Write implementation
* Write integration tests

* Does it work? Sure does

* Whats the caviats of it? | am writing answers without
asking the questions

How | develop day-to-day

* Ask many questions, and answer them one by one

Ip you define what you are trying
it

end time training for

So, how does it really work?

Write enough code Improve the code,
so it passes - GREEN while still passing
the tests —

REFACTOR

Move forward efficiently

* Fake implementation
* Implement the obvious

* Add tests and generalize your code -
Triangulation

* There are some benefits

* Evolving Design — flexible, maintainable and
clean

SO, Why e Documentation — you know exactly what is
should | use

happening and how to do it

* The easiness of debugging — no need to
Console.WriteLine() everywhere to find out
what does not work. You know exactly what
does not work '

ity

* Its not that scary to change code when you
get feedback on what breaks /

o

* No stress, there are paths that will lead you

. to success
What if | get * Transformation Priority Premise — evolution
lost? of the code from simplest to more complex

e Object Calisthenics — the rules that will make
TDD for OOD easier

/
7

Transformation Priority Premise

Transformation Priority Premise - What is “Obvious implementation” ?

TRANSFORMATION STARTING CODE FINAL CODE

1 {} == nil return nil

2 nil => constant return nil return “17

3 constant => constant+ return “17 return “17 + W27

4 constant => scalar return “17” + “27 return argument

5 statement => statements return argument return arguments

6 unconditional => conditional return arguments if (condition) return arguments
7 scalar => array dog [dog, cat]

8 array => container [dog, cat] {dog = “DOG", cat = “CAT"}
9 statement => recursion a+b a + recursion

10 conditional => loop if (condition) while (condition)

11 recursion => tail recursion a + recursion recursion

12 expression == function today - birthday Calculatelge ()

13 variable => mutation day var day = 10; day = 11;

14 switch case

Object Calisthenics rules

Only one level of indentation per method

Don’t use the ELSE keyword

Wrap all primitives and strings

First class collections (wrap all collections)

Only one dot per line deg-Bedy-Tail-Was => dog.ExpressHappiness ()
No abbreviations

Keep all entities small
[10 files per package, 50 lines per class, 5 lines per method, 2 arguments per method]

8. No classes with more than two instance variables
9. No public getters/setters/properties
10.All classes must have state

NoOohkwDdD -~

Just a beginning...

NOT JUST A PRACTICE, BUT MUCH MORE TO LEARN...
A MENTALITY

