
So, what’s up 
with TDD?

By Wilhelm Vold



How I develop day-to-day

• Outline the specification of the feature

• Write implementation

• Write integration tests

• Does it work? Sure does

• Whats the caviats of it? I am writing answers without 
asking the questions



TDD – a better approach

• Ask many questions, and answer them one by one

• Writing tests defines help you define what you are trying 
to achieve before achieving it

• Do you run a marathon and then spend time training for 
it? Probably a bad idea



So, how does it really work?

Write a test that will 
fail – RED 

1

Write enough code 
so it passes - GREEN

2

Improve the code, 
while still passing 
the tests –
REFACTOR

3



Move forward efficiently

• Fake implementation

• Implement the obvious

• Add tests and generalize your code -
Triangulation



So, why 
should I use 
it?

• There are some benefits

• Evolving Design – flexible, maintainable and 
clean

• Documentation – you know exactly what is 
happening and how to do it

• The easiness of debugging – no need to 
Console.WriteLine() everywhere to find out 
what does not work. You know exactly what 
does not work

• Its not that scary to change code when you 
get feedback on what breaks



What if I get 
lost?

• No stress, there are paths that will lead you 
to success

• Transformation Priority Premise – evolution 
of the code from simplest to more complex

• Object Calisthenics – the rules that will make 
TDD for OOD easier 



Transformation Priority Premise



Object Calisthenics rules



Just a beginning…

NOT JUST A PRACTICE, BUT 
A MENTALITY 

MUCH MORE TO LEARN…


