THE 2 HABITS
OF HIGHLY

EFFECTIVE
PEC -LE
Test Driven Developers
7

David Ramsay

i —

Remember your training ‘i‘f\f

- Only test one behaviour at a time_1J

- Only one logical assertion per test 4~

- Mutually independent tests &

Don’t mix state and collaboration assertions!

RED-GREEN-REFACTOR

1. Write a failing test §

2. Makeitpass _, .,
3. Make it . beautiful

What's a red test? &

It fails!
public class BankAccountShould

[Test]
public void HaveABalanceOf1000nDeposit()

{
BankAccount newAccount = new BankAccount();
double balance = 0.00;

Assert.AreEqual(100.00, balance);

J

-

How can | make it green?

Make it work!

public class BankAccountShould

[Test]
public void HaveABalanceOf1000nDeposit()

{

BankAccount newAccount = new BankAccount();

bankAccount.Deposit(100.00);
double balance = 100.00;

Assert.AreEqual(100.00, balance);

How do | refactor? |

Make it beautiful!

public class BankAccountShould public class BankAccount

{ {
[Test] private double _balance = 0.00;
public void HaveABalanceOf1000nDeposit() public void Deposit(double deposit)
{ {
BankAccount newAccount = new BankAccount(); _balance = balance + deposit;

}

bankAccount.Deposit(100.00);

double balance = bankAccount.GetBalance(); public double CurrentBalance()
{

Assert.AreEqual(100.00, balance); return _balance;

}

Remember FIRST ¥

The highly effective Test Driven Developer should implement

- Fast
- Isolated @

- Repeatable ™\

- Self validating y/
Timely

Give meaningful names

- Construct class and method names like sentences

public class Tests

{
[Test]
public void TestBankAccountBalance()
{
BankAccount account = new BankAccount();
var balance = account.CurrentBalance();
Assert.AreEqual(0.00, balance);
¥
}

public class BankAccountShould

[Test]
public void StartWithBalanceOf@()
{

BankAccount account = new BankAccount();
var balance = account.CurrentBalance();

Assert.AreEqual(@.00, balance); }

Not testing anything
Excessive setup

Too many assertions

Test too long -

~

Checking internals

- Bloated construction impeding test readabilit

Working only on dev machine

Sy
FU/VC 76

- Testing or containing irrelevant info

If it smells like &....

Unclear failing reason

- Checking more than strictly necessary

-exception swallowing in test

L/ Ty
BUR
/ED

IN T
Yy A

O
b
)
S \0(\9\(\
ol 3 °% e
ot < W
g \oé‘c’a
° o
te
st)
Co
Nz
lon:
i le /0’78/

Do’s and don’ts

DO ¢

Keep tests and production code seperate <

Model unit tests on the structure of production
code

DON'T

Refactor with failing tests &)

Use production data or dependencies for tests -
only use what you can control g§

