
Test Driven Developers

David Ramsay

Remember your training 🤺
- Only test one behaviour at a time 1⃣
- Only one logical assertion per test 🧪
- Mutually independent tests 🦋
- Don’t mix state and collaboration assertions!

RED-GREEN-REFACTOR

1. Write a failing test 󰣻
2. Make it pass 🏎🏎
3. Make it ✨beautiful✨

What’s a red test? 🤔

It fails!

public class BankAccountShould
{

[Test]
public void HaveABalanceOf100OnDeposit()
{

BankAccount newAccount = new BankAccount();

double balance = 0.00;

Assert.AreEqual(100.00, balance);
}

}

How can I make it green? 🤔

Make it work!

public class BankAccountShould
{

[Test]
public void HaveABalanceOf100OnDeposit()
{

BankAccount newAccount = new BankAccount();

bankAccount.Deposit(100.00);
double balance = 100.00;

Assert.AreEqual(100.00, balance);
}

}

How do I refactor? 🤔
Make it beautiful!

public class BankAccountShould
{

[Test]
public void HaveABalanceOf100OnDeposit()
{

BankAccount newAccount = new BankAccount();

bankAccount.Deposit(100.00);
double balance = bankAccount.GetBalance();

Assert.AreEqual(100.00, balance);
}

}}…

public class BankAccount
{

private double _balance = 0.00;
 public void Deposit(double deposit)
 {
 _balance = _balance + deposit;
 }

public double CurrentBalance()
 {
 return _balance;
 }
}

Remember FIRST 🥇
The highly effective Test Driven Developer should implement

- Fast ⚡
- Isolated 🏝
- Repeatable 🪃
- Self validating ✔
- Timely ⏱

- Construct class and method names like sentences
- ❌

public class Tests
{
 [Test]
 public void TestBankAccountBalance()
 {
 BankAccount account = new BankAccount();

var balance = account.CurrentBalance();

Assert.AreEqual(0.00, balance);
 }
}

- ✔

public class BankAccountShould
{

[Test]
public void StartWithBalanceOf0()
{

BankAccount account = new BankAccount();

var balance = account.CurrentBalance();

Assert.AreEqual(0.00, balance); }
}

Give meaningful names 🏷

If it smells like 💩….
- Not testing anything

- Excessive setup

- Too many assertions

- Test too long

- Checking internals

- Checking more than strictly necessary

- Working only on dev machine

- Testing or containing irrelevant info

-exception swallowing in test

-
Test not belonging

logically to the

fixture

O
b
s
ol
et
e

te
st

- HIDDEN FUNCTIONALITY BURIED IN THE SETUP
- Bloated construction impeding test readability

- Unclear failing reason

- Conditional
logic test

DO 👍 DON’T 👎

Keep tests and production code seperate ↔ Refactor with failing tests 😡
Model unit tests on the structure of production
code 🪞

Use production data or dependencies for tests -
only use what you can control 🎮

Do’s and don’ts

Thanks for now!

