
TDD – Test Driven Development

Presentation by : Indumathi Chinnaswamy

Date: 25.11.2022





Why testing is important?

"If you don’t have tests, how do you know your code is doing the thing right and doing 
the right thing?"



What is TDD?

• Before you write code, think about what it will do. Write a test that will use the method 
you haven't even written yet.

• A test is not something you "do", it is something you "write" and run once, twice, thrice 
and more.

• TDD is a technique whereby you write your test cases before you write any 
implementation code.



The Three Rules of TDD
Robert C. Martin (“Uncle Bob”) provides a concise set of rules for practicing TDD.

3
You are not allowed to write any more 
production code than is sufficient to 
pass the one failing unit test.

2
You are not allowed to write any more of 
a unit test than is sufficient to fail. (compilation failures are 
failures).

1
You are not allowed to write any 
production code unless it is for making a 
failing unit test pass.



The TDD way

• Do the simple thing

• Write a test that fails (red)

• Make the test pass (green)

• Refactor implementation code

• Use the compiler – let it tell you about the errors

• One assertion per test



Stages of TDD

1. Write test

2. Fail test

3. Write code4. Test pass

5. Refactor



Benefits of TDD

• Refactor constantly

• Easy maintenance code

• Design is divided into phases

• Clear documentation of code

• Promotes continuous change



Why TDD?

• Early bug detection

• Better designed, cleaner and more extensible code

• Avoids duplication of code

• Good for teamwork

• Good for developers

• Confidence to refactor



Kent Beck 
Quotes

If you're having trouble 
succeeding, fail.

I'm not a great programmer; I'm 
just a good programmer with 
great habits.

Make it work, make it right, 
make it fast.



Issues with TDD

• Tests are additional code that must be maintained with the code.

• More test code than production code.

• User interface can be tested, but changes often.

• If the requirement is not clear or changes often.

• TDD is always underestimated and always considered as a matter of slowing down 
the deliverables.

• The test are only good as the developer who wrote them. (Developer should have the right 
knowledge about the test/ behavior)

• Legacy and complex code

• All the developers in the team must follow.



Thank you!


