
TDD
Test Driven Development



What is TDD?

TDD process:

1. Determine the behaviour that needs to be 
implemented

2. Write a single FAILING test that verifies 
part of the behaviour

3. Write the simplest possible code that 
makes the test pass (then commit code)

4. Refactor your code for clarity and 
readability while keeping tests passing 
(then commit your code again)

5. Write another failing test to verify another 
part of the behaviour (iterate process from 
2)

Diagram is courtesy of Spiceworks: https://www.spiceworks.com/tech/devops/articles/what-is-tdd/



Why?

● TDD leads to solutions of testable or loosely coupled modules. This means code that is more:
○ Flexible
○ Maintainable
○ Clean

● Makes intended behaviour documented through the tests

● Easy debugging. Focused around a narrow behaviour or scope

● Builds confidence in your code and that later changes does not break existing behaviour



The three laws of TDD

1. No production code unless it is to make a test green

2. Limit the next unit test to what makes it fail

3. Do not write more production code than needed to make failing test pass

Refactoring - use the Rule of Three:

● Extract duplication only when you see it for the third time



Writing the failing test

Principles when writing tests

● Always write test before implementing 
production code

● Make sure the test is failing
● Focus on a specific functionality detail
● Write one test at a time
● Test should verify some behaviour existing 

tests does not
● Test one degree of freedom at a time
● Test behaviour - not structure
● Commit production code and test when 

tests are passing
● When you cannot think of another test - 

you are done



Write code

Three main steps

1. Fake implementation
E.g. return the answer that satisfies 
the test

2. Obvious (simple) implementation
Following the Transformation Priority 
Premise, TPP

3. Triangulation with the next test
Starting with fake implementation and 
add more tests -> will force the code 
more generic



Transformation Priority Premise

Transformations on the top of the list preferred

When making test pass, do so with 
transformations that are simpler rather than 
more complex

“As the tests get more specific, 
the code gets more generic.”

- Robert C. Martin



Matching strings

From Advent of Code 2015 day 8:

● Parse strings separating escape characters and code 
characters from the character in string and counting them

● We find that:
○ “” has zero characters but 2 characters of code
○ “abc” has 3 characters and 5 characters of code
○ “aaa\”aaa” has 7 characters and 10 characters of code
○ “\x27” has 1 character (‘) as hex ascii code and 6 characters 

of code
● Task is to separate the number of characters from the total 

number of characters of code and subtract the first from 
the second

(Solution implemented in TypeScript)



TDD First steps

● Write simple test that verifies simplest 
functionality (an empty string)

● Implement fake first code to make test 
pass



Add test and see it fail



Write simple implementation to make test pass

When deciding for the implementation, we are 
considering the next, but highest possible level 
of the Transformation Priority Premise:

● Moving from returning a constant to 
returning advanced constant

Obviously not a sufficiently generalized solution 
for the end but satisfying the tests we have now

Moving on to Triangulation:

Time to commit and consider next test



Adding triangulation test

Next partial functionality will force us to 
generalise the code even further.

We can no longer avoid actually parsing the 
string, looking for specific escape characters



Make test green and refactor



Add another test to expand functionality



Questions?



Thank you

How to contact me:
sten.johnsen@bouvet.no
@stenjo on Twitter

mailto:sten.johnsen@bouvet.no

