
Learning TDD for the second
time
my key takeaways from learning to walk with a mob

Elisabeth Forland – elisabeth.forland@bouvet.no

Bouvet

Background
• Worked as a developer for 19 years

• First experience with TDD in 2007

• Mostly learnt from internal presentations and coding dojos at work

• The degree of automated testing has been varying depending on project

• Eager to «get back into it»

Mob programming
• Navigator – the person making the final

descision on what to do next, the person
the driver should be listening to.

• Driver – the person typing, not required
to think

• Mob – everyone else in the room. They
observe and discuss with the navigator
the way forward.

Red – Green – Refactor
• Red: write a failing test (and it should fail for the

right reasons!)

• Green: write code to make the test pass

• Refactor: when all tests are green, you are allowed
to refactor

• Rule of Three:

• Extract duplication
only when you see it
for the third time!

Good habits are important!
• Commit often

• Refactor aggressively

• But only refactor when all tests are green!

Test behaviour – not implementation

o Focus on finding the behaviour, starting with the
simplest one.
o When given a task I tend to think out the entire

implementation in my head first, so changing the
focus will need some practicing.

o Finding the behaviour can be tricky, often we will find
restrictions or requirements first and focus on them
instead of looking for the behaviour

o In the Tic Tac Toe, we focused on having a board with
9 squares instead of what happens when you first
start the game.

Find the most basic behaviour

Walking backwards
• Start with writing the assertions in the

test. It helps you focus on what you
want to test and keep focus on that.

• Write more and more specific tests to
drive the design forward. The design
might end up completely different
from what it would have done if you
didn’t.

• as you add more tests, it becomes
easier to see the patterns

Don’t run to fast
• It is often tempting to do too much at once:

o Don't refactor on red tests

o Don't remove code when refactoring until you have
written the refactored code. You might need it to see
what your starting point was. (unless using resharper
to extract, etc.)

o Write the simplest implementation first. If you do not
know the implementation, use fake implementation.

o Use triangulation: don't refactor until you see the
pattern, typically after 3 occurrences of the same code.

o Remember to commit on green tests! (this is
something I often forget!)

Transformation Priority Premise

• Start simple:
• 1. Fake implementation – hard code to make test pass
• 2. Obvious implementation – when you are sure about the code you need to write
• 3. Triangulation with the next test – when you are not sure about the pattern or how to generalize

a behaviour.
• Start simple, add more tests -> this will force the code to become more generic

• Use the Transformation Priority Table if stuck!

Using the TPP table
Often, we think to compex

o Keeping the table next to you when
programming helps remind you that
you should start small, and what
steps you can try to use before going
to more complex implementation
techniques.

o In the Arabic to Roman converter
kata, I probably wouldn’t have
thought of using a table in the
way we ended up.

Be smart - but not too smart
 In the Arabic to Roman converter, we decided to

keep IV=4 in the dictonary

 it did not make a big impact to keep numbers like
that in the dictionary, and it would complicate the
code a lot to try to calculate it instead.

 Normally I would probably spend a lot of time
trying to get it out of there.

I IV V IX X

If your lost

• Its ok to loose track of what you are doing when mob
programming, but it is not ok to leave it like that. You
should ask questions until you are up to speed with the
others.

• Also, your questions might result in new ideas or that
the mob realizes that they are on the wrong track.

• OR that you were just lost xD

Thanks for listening!
Questions?

Elisabeth Forland – elisabeth.forland@bouvet.no

Bouvet

