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• One responsibility
• One reason to change
• Small modules 

• easy to combine

• disjointed

• Facilitates 

• naming and reading

• understanding and editing

Single responsibility
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• Is a kind of…

• Composition


• Has a…
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• High-level modules should not 
depend on low-level modules. 
Both should depend on the 
abstraction.

• Abstractions should not depend 
on details. Details should 
depend on abstractions.

• Contract between elements

Dependency Inversion
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Frontend code
New possible approach

• app


• common


• features

app

common

features


users

view


index.ts

form.ts

actions.ts

ViewUser.tsx


table

index.ts

columns.ts

TableUsers.tsx
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Question?
Thank you for your attention 

• pietro@balestra.dev

• github.com/p1e7r0
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