
Pietro Balestra 20.10.22

SOLID
Principles

Principles
SOLID

Principles

• Single-responsibility principle

SOLID

Principles

• Single-responsibility principle

• Open-closed principle

SOLID

Principles

• Single-responsibility principle

• Open-closed principle

• Liskov substitution principle

SOLID

Principles

• Single-responsibility principle

• Open-closed principle

• Liskov substitution principle

• Interface segregation principle

SOLID

Principles

• Single-responsibility principle

• Open-closed principle

• Liskov substitution principle

• Interface segregation principle

• Dependency inversion principle

SOLID

Principles

• Single-responsibility principle

• Open-closed principle

• Liskov substitution principle

• Interface segregation principle

• Dependency inversion principle

SOLID

SOLID
Single responsibility

SOLID

• One responsibility

Single responsibility

SOLID

• One responsibility
• One reason to change

Single responsibility

SOLID

• One responsibility
• One reason to change
• Small modules

• easy to combine

• disjointed

Single responsibility

SOLID

• One responsibility
• One reason to change
• Small modules

• easy to combine

• disjointed

• Facilitates

• naming and reading

• understanding and editing

Single responsibility

SOLID

• Open for extension

Open closed

SOLID

• Open for extension
• Closed for modification

Open closed

SOLID

• Open for extension
• Closed for modification
• New feature new code

Open closed

SOLID

• Derived class should be
substitutable with their base
class

Liskov substitution

SOLID

• Derived class should be
substitutable with their base
class

• Inheritance

• Is a kind of…

Liskov substitution

SOLID

• Derived class should be
substitutable with their base
class

• Inheritance

• Is a kind of…

• Composition

• Has a…

Liskov substitution

SOLID

• Clients should not be forced to
depend on methods that they do
not use.

Interface segregation

SOLID

• Clients should not be forced to
depend on methods that they do
not use.

• Avoid generic interface

Interface segregation

SOLID

• Clients should not be forced to
depend on methods that they do
not use.

• Avoid generic interface

• Promote specific interface

Interface segregation

SOLID

• High-level modules should not
depend on low-level modules.
Both should depend on the
abstraction.

Dependency Inversion

SOLID

• High-level modules should not
depend on low-level modules.
Both should depend on the
abstraction.

• Abstractions should not depend
on details. Details should
depend on abstractions.

Dependency Inversion

SOLID

• High-level modules should not
depend on low-level modules.
Both should depend on the
abstraction.

• Abstractions should not depend
on details. Details should
depend on abstractions.

• Contract between elements

Dependency Inversion

Frontend code
Old approach

• app

• common

app

 App.tsx

 routes.ts

 store.ts

common

components

Routes.tsx

Form.tsx

Table.tsx

features

…

Frontend code
Old approach

app

common

features

users

config

routes.ts

columns.ts

form.ts

NewUser.tsx

ViewUser.tsx

EditUser.tsx

ViewUsers.tsx

products

orders

• app

• common

• features

Frontend code
New possible approach

• app

• common

• features

app

common

features

users

new

index.ts

form.ts

actions.ts

NewUser.tsx

edit

index.ts

form.ts

actions.ts

EditUser.tsx

Frontend code
New possible approach

• app

• common

• features

app

common

features

users

view

index.ts

form.ts

actions.ts

ViewUser.tsx

table

index.ts

columns.ts

TableUsers.tsx

References

• https://www.educative.io/blog/solid-principles-oop-c-sharp

• https://thedavidmasters.com/2018/10/27/solid-design-principles/

• https://imgflip.com/memegenerator

https://www.educative.io/blog/solid-principles-oop-c-sharp
https://thedavidmasters.com/2018/10/27/solid-design-principles/
https://imgflip.com/memegenerator
https://www.educative.io/blog/solid-principles-oop-c-sharp
https://thedavidmasters.com/2018/10/27/solid-design-principles/
https://imgflip.com/memegenerator

Question?
Thank you for your attention

• pietro@balestra.dev

• github.com/p1e7r0

mailto:pietro@balestra.dev
https://github.com/p1e7r0
mailto:pietro@balestra.dev
https://github.com/p1e7r0

