Principles

Pietro Balestra 20.10.22

SOLID

Principles

SOLID

Principles

* Single-responsibility principle

SOLID

Principles

* Single-responsibility principle

* Open-closed principle

SOLID

Principles

* Single-responsibility principle

* Open-closed principle

» Liskov substitution principle ﬂ“ [||I ﬂ“

SOLID

Principles

* Single-responsibility principle

* Open-closed principle

* Liskov substitution principle
* Interface segregation principle

SOLID

Principles

* Single-responsibility principle
 Open-closed principle
* Liskov substitution principle

* Interface segregation principle

 Dependency inversion principle

SOLID

Principles

* Single-responsibility principle
 Open-closed principle
* Liskov substitution principle

* Interface segregation principle

 Dependency inversion principle

Single responsibility
SOLID

R s ! .
- ‘. » \
. ‘ L
- .
4 \-.‘ .. \
-t ’
N \
X
S/ \

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

Single responsibility
SOLID

* One responsibility

. ’ VN v) B \
. ‘ v
- \
b \-.‘ .. \
-t ’
N \
e 4
N/ \

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

Single responsibility
SOLID

* One responsibility
* One reason to change

W A 'S) .‘ \
)) \.‘~
- .
4 \-.‘ .. \
wu N '
.. \\
L
S/ \

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

Single responsibility
SOLID

* One responsibility
* One reason to change
e Small modules

e easy to combine

o disjointed

W A 'S) .‘ \
)) \.‘~
- .
4 \-.‘ .. \
wu N '
.. \\
L
S/ \

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

Single responsibility
SOLID

* One responsibility
* One reason to change
* Small modules

e easy to combine

- disjointed AR e
 Facilitates \\v
- - SINGLE RESPONSIBILITY PRINCIPLE
° nam I ng and read I ng Just Because You Can, Doesn't Mean You Should

* understanding and editing

Open closed
SOLID

* Open for extension

OPEN CLOSE PRINCIPLE

Brain surgery is not necessary when putting on a hat

Open closed
SOLID

* Open for extension
e Closed for modification

OPEN CLOSE PRINCIPLE

Brain surgery is not necessary when putting on a hat

Open closed
SOLID

* Open for extension
e Closed for modification
e New feature new code

OPEN CLOSE PRINCIPLE

Brain surgery is not necessary when putting on a hat

Liskov substitution
SOLID

e Derived class should be
substitutable with their base
class

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

Liskov substitution
SOLID

e Derived class should be
substitutable with their base
class

e |nheritance

e |s akind of...

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

Liskov substitution
SOLID

e Derived class should be
substitutable with their base

class
e |nheritance
e |s a kind of...

e Composition

LISKOV SUBSTITUTION PRINCIPLE

. H
as a... If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

Interface segregation
SOLID

 Clients should not be forced to
depend on methods that they do
Nnot use.

INTERFACE SEGREGATION PRINCIPLE

You Want Me To Plug This In, Where?

Interface segregation
SOLID

 Clients should not be forced to
depend on methods that they do
Nnot use.

* Avoid generic interface

INTERFACE SEGREGATION PRINCIPLE

You Want Me To Plug This In, Where?

Interface segregation
SOLID

 Clients should not be forced to
depend on methods that they do
Nnot use.

* Avoid generic interface

 Promote specific interface

INTERFACE SEGREGATION PRINCIPLE

You Want Me To Plug This In, Where?

Dependency Inversion
SOLID

* High-level modules should not
depend on low-level modules.
Both should depend on the
abstraction.

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

SOLID

* High-level modules should not
depend on low-level modules.
Both should depend on the
abstraction.

* Abstractions should not depend
on details. Detalls should
depend on abstractions.

Dependency Inversion

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

SOLID

* High-level modules should not
depend on low-level modules.
Both should depend on the
abstraction.

* Abstractions should not depend
on details. Detalls should
depend on abstractions.

e Contract between elements

Dependency Inversion

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

Frontend code
Old approach

* app

* common

app
App.tsx

routes.ts
store.ts
common
components
Routes.tsx
Form.tsx
Table.tsx

features

Frontend code app

Old approach common
features

USEers

* app

config
e Ccommon routes.ts

e features columns.ts
form.ts
NewUser.tsx
ViewUser.tsx
EditUser.tsx
ViewUsers.tsx
products

orders

Frontend code

New possible approach

* app

* common

e features

app
common

features
users

new
index.ts
form.ts
actions.ts
NewUser.tsx

edit
index.ts
form.ts
actions.ts
EditUser.tsx

Frontend code

New possible approach

* app
¢ common

e features

app
common

features
users
view
iIndex.ts
form.ts
actions.ts
ViewUser.tsx
table
iIndex.ts
columns.ts

TableUsers.tsx

References

e https://www.educative.io/blog/solid-principles-oop-c-sharp
* https://thedavidmasters.com/2018/10/27/solid-design-principles/
e https://imgflip.com/memegenerator

https://www.educative.io/blog/solid-principles-oop-c-sharp
https://thedavidmasters.com/2018/10/27/solid-design-principles/
https://imgflip.com/memegenerator
https://www.educative.io/blog/solid-principles-oop-c-sharp
https://thedavidmasters.com/2018/10/27/solid-design-principles/
https://imgflip.com/memegenerator

Question?

Thank you for your attention

e pietro@balestra.dev
e github.com/pl1e/r0

mailto:pietro@balestra.dev
https://github.com/p1e7r0
mailto:pietro@balestra.dev
https://github.com/p1e7r0

