Principles

Pietro Balestra 20.10.22



SOLID

Principles



SOLID

Principles

* Single-responsibility principle



SOLID

Principles

* Single-responsibility principle

* Open-closed principle



SOLID

Principles

* Single-responsibility principle

* Open-closed principle

» Liskov substitution principle ﬂ“ [||I ﬂ“



SOLID

Principles

* Single-responsibility principle

* Open-closed principle

* Liskov substitution principle
* Interface segregation principle



SOLID

Principles

* Single-responsibility principle
 Open-closed principle
* Liskov substitution principle

* Interface segregation principle

 Dependency inversion principle



SOLID

Principles

* Single-responsibility principle
 Open-closed principle
* Liskov substitution principle

* Interface segregation principle

 Dependency inversion principle



Single responsibility
SOLID

R s ! .
- ‘. » \
. ‘ L
- .
4 \-.‘ .. \
-t ’
N \
X
S/ \

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should




Single responsibility
SOLID

* One responsibility

. ’ VN v ) B \
. ‘ v
- \
b \-.‘ .. \
-t ’
N \
e 4
N/ \

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should




Single responsibility
SOLID

* One responsibility
* One reason to change

W A 'S ) .‘ \
) ) \.‘~
- .
4 \-.‘ .. \
wu N '
.. \\
L
S/ \

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should




Single responsibility
SOLID

* One responsibility
* One reason to change
e Small modules

e easy to combine

o disjointed

W A 'S ) .‘ \
) ) \.‘~
- .
4 \-.‘ .. \
wu N '
.. \\
L
S/ \

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should




Single responsibility
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* One responsibility
* One reason to change
* Small modules

e easy to combine

- disjointed AR e
 Facilitates \\v
- - SINGLE RESPONSIBILITY PRINCIPLE
° nam I ng and read I ng Just Because You Can, Doesn't Mean You Should

* understanding and editing
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Open closed
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* Open for extension
e Closed for modification
e New feature new code

OPEN CLOSE PRINCIPLE

Brain surgery is not necessary when putting on a hat
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Liskov substitution
SOLID

e Derived class should be
substitutable with their base

class
e |nheritance
e |s a kind of...

e Composition

LISKOV SUBSTITUTION PRINCIPLE

. H
as a... If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction
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Interface segregation
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 Clients should not be forced to
depend on methods that they do
Nnot use.

* Avoid generic interface

 Promote specific interface
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* High-level modules should not
depend on low-level modules.
Both should depend on the
abstraction.

* Abstractions should not depend
on details. Detalls should
depend on abstractions.

e Contract between elements

Dependency Inversion

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?




Frontend code
Old approach

* app

* common

app
App.tsx

routes.ts
store.ts
common
components
Routes.tsx
Form.tsx
Table.tsx

features



Frontend code app

Old approach common
features

USEers

* app

config
e Ccommon routes.ts

e features columns.ts
form.ts
NewUser.tsx
ViewUser.tsx
EditUser.tsx
ViewUsers.tsx
products

orders
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New possible approach

* app

* common

e features

app
common

features
users

new
index.ts
form.ts
actions.ts
NewUser.tsx

edit
index.ts
form.ts
actions.ts
EditUser.tsx



Frontend code

New possible approach

* app
¢ common

e features

app
common

features
users
view
iIndex.ts
form.ts
actions.ts
ViewUser.tsx
table
iIndex.ts
columns.ts

TableUsers.tsx
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Question?

Thank you for your attention

e pietro@balestra.dev
e github.com/pl1e/r0
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