
TDD - Test Driven Development

A (re)introduction
STEFANO MONDINI – EOC

WALKING



Introduction[1]

Kent Beck (1961)[2]

Original signer (1 of 17) of Agile Manifesto[3]

Author of the Extreme Programming books

Rediscoverer of Test-Driven Development



Introduction
1970
Kent Beck: Read book about how to write programs

1990
Software consultant

Develop first framework for unit testing: SUnit for Smalltalk



Write the test before I had the code



Result

Anxiety dropped away

I don't have to make all tests pass at once 

Can I think of any other tests? No. I must 
be done



Two rules of TDD[4] – Kent Beck

1. Write new code only if an 
automated test has failed

2. Eliminate duplication



TDD-Cycle

Rhythm of code development

Focus on a small scope of our problem



TDD-Cycle - Red, Green, Refactor cycle

RED
Write a 

failing test

GREEN
Write just 

enough code 
to pass the 

test

REFACTOR
Improve

code while
passing the 

test



TDD-Cycle - Red, Green, Refactor cycle

RED
Write a 

failing test

GREEN
Write just 

enough code 
to pass the 

test

REFACTOR
Improve

code while
passing the 

test

Write a test

Make it run

Make it right



The three laws of TDD[5] – Uncle Bob

1. No production code, unless make 
failing test pass

2. Only one test at time

3. No more code that is sufficient to 
pass the failing test

Robert C. Martin



Three steps for TDD[6] – Martin Fowler

1. Write a test

2. Write until test passes

3. Refactor both new and old code 
to make it well structured



The three laws of TDD

RED
Write a 

failing test

Write

Predict outcome

Run test

See it fail



The three laws of TDD

GREEN
Write just 

enough code 
to pass the 

test

Pass test ASAP
Commit code

Use hard-coded values

If statements

Fake it until you make it.



Three techniques to make it “green”

GREEN
Write just 

enough code 
to pass the 

test

Fake It

Obvious Implementation

Triangulation



The three laws of TDD

REFACTOR
Improve

code while
passing the 

test

Improve design

No change in behavior

Remove duplication

Improve names



Refactoring: Rule of three

REFACTOR
Improve

code while
passing the 

test

Rule of Three

Reduces risk of wrong 
abstraction



"Clean code that works (Ron Jeffries)“
is the goal of Test-Driven Development



Questions?



Further reading and references
1. https://tdd.mooc.fi/1-tdd

2. https://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530

3. https://agilemanifesto.org/principles.html

4. https://stanislaw.github.io/2016/01/25/notes-on-test-driven-development-by-example-by-kent-
beck.html

5. http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

6. https://www.thedroidsonroids.com/blog/key-laws-of-tdd

Immagini:
❖http://stephane.ducasse.free.fr/Programmez/OnTheWeb/Eng-Art8-SUnit-V1.pdf

❖Reddit

https://tdd.mooc.fi/1-tdd
https://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
https://agilemanifesto.org/principles.html
https://stanislaw.github.io/2016/01/25/notes-on-test-driven-development-by-example-by-kent-beck.html
http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
https://www.thedroidsonroids.com/blog/key-laws-of-tdd
http://stephane.ducasse.free.fr/Programmez/OnTheWeb/Eng-Art8-SUnit-V1.pdf

