Ports and Adapters
Architecture

Ports and adapters - Intent

* “Allow an application to equally be driven by users, programs,
automated test or batch scripts, and to be developed and tested in
isolation from its eventual run-time devices and databases.”

Source: https://alistair.cockburn.us/hexagonal-architecture/

N-Tier / Layer architecture

Business

Data Access

Database

Problems with layers

 Easy to fall into database driven design
* Coupling "

* Testing

Data Access

Database

Dependency inversion

* High-level modules should not depend on low-level
modules. Both should depend on abstractions.

Business

* Abstractions should not depend upon details

* Details should depend upon abstractions

Data Access

e Use interfaces and inject a concrete implementation

Database

o =]

‘ ' Presentation

| v

Presentation l UserController }----- > UserDto

+ createUser(user: UserDto)

UserController - - UserDto

+ createUser(user: UserDto)

Domain Y
) s UserService =
Domain Y <
Userser\/ice . User + createUser(user: User) VR User
+ createUser(user: User) S il
= <. + saveUser(user: User)
Database access ! :
UserDao ----3 UserEntity Database access
; UserDaolmpl [---- UserEntity
+ saveUser(user: UserEntity)

+ saveUser(user: User)

Source: https://www.mscharhag.com/architecture/layer-onion-hexagonal-architecture

O O
) (G

' :

User Interface REST API
Domain
Database Message Queue E-Mail

l l l
S O X

Source: https://www.mscharhag.com/architecture/layer-onion-hexagonal-architecture

Ports and adapters

External System
{upatream)

Appl ication Adapter External System
Services hpainaam)
Adapter
Domain
Model

Adapter

External System
{downstream)

External System
{upstream)

External System
{dowmistream)

Source: https://vaadin.com/blog/ddd-part-3-domain-driven-design-and-the-hexagonal-architecture

What is a port?

* A portis an interface, a contract
* You may plug in anything that fits the port
* In CHitis an interface

What is an adapter?

e An adapter transforms a request so it fits the port
* Many adapters for a single port
* In C#, this is a class implementing an interface (the port)

A new order

Business

Domain

Data Access

Database

Source: https://medium.com/ssense-tech/hexagonal-architecture-there-are-always-two-sides-to-every-story-bc0780ed7d9c

Driving and driven side

DRIVING SIDE DRIVEN SIDE

=

< o
Application g ‘

o ‘
Adapter Adapter

Source: https://medium.com/ssense-tech/hexagonal-architecture-there-are-always-two-sides-to-every-story-bc0780ed7d9c

Driving side

Application

Scheduled Scheduled Service
job Adapter

Driven side

Database

Adapter
Application

Service File

Adapter

»
»
[
»

g File system

Automated testing

* Makes it easy to use test doubles

* It’s just another adapter to plug into a port
* Makes it easy to write tests

* Allows test-driving application

Clean Architecture / Onion Architecture

[The Clean Architecture

Controllers

| | Enterprise Business Rules

|| Application Business Rules
|| Interface Adapters

| | Frameworks & Drivers

Use Cases

I

Presenter |—> 0‘:::3’;:“

i

Use Case
Interactor

v

<I
Controller |—>» I‘r’\;fnc:o':t

>

Source:https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Advantages of Ports and adapters

* Allows us to keep the application isolated from the implementation
details

e Puts the domain at the center
 Focus on the feature instead of the technical details
* Delay choices on technical implementation

* Prevents vendor lock-in, and makes it easier for your application’s
tech stack to evolve with time

* Enables us to really test our application in isolation from external
dependencies.

Questions?

