
TDD - Flying

The Java Way



Introduction

 What i planned to do is not what i was able to do

 The plan was to implement the outside-in-kata in java

 Why?

 I am currently not working in any C# projects

 By doing this kata in java it will provide more value in a normal workday

 By investing more time i will remenber better.

 Why ony a plan?

 There was simply not enough time

 Holyday preperations

 Kids

 Bouvet Summer party



What did i got time to do?

 Doing the string calculator to warm up.

 Creating the skeleton for the Acceptance tests and Unit tests

 Creating most of the classes.

 Getting the PrintHeaderWhenThereAreNoTransactions to work

 Yey!

 (Obvious implementation)



My java setup



Why am i showing this?

 To show

 Code smells

 Violation of Object Calistenics rules

 Bad pratices

 Will focus on the Java backend part



Unit tests

 Hundreds of tests failing because they rely on LDAP user directory.

 Unit test fail beacuse they are missing the SMTP server.

 Integration test inside unit test project. Failing beause the database is 

missing (By the way: There is a integration test project also)

 And a lot of tests fail because they rely on precompiled code. (java classes

are generated from xsd files)

 Tests expect exceptions to be throwed

@Test(expected = IllegalArgumentException.class)

public void getTemplateShouldThrowIllegalArgumentExceptionIfTemplateDoesNotExist() {

provider.getTemplate(NON_EXISTING_TEMPLATE);

}



What is the test smells

 Tests should be independent and small

 Exception swallowing

 Unclear failing reason

 There extremely many excepetion thown upon compile



Code smell: Large class

 The LdapSource class

 1285 lines of code

 74 Methods

 How to fix?

 @SuppressWarnings({ "PMD.GodClass", "PMD.TooManyMethods", 

"PMD.ExcessiveClassLength" })

 And another 17 classes that needs @SuppressWarnings PMD.GodClass.



Code smell: Man in the middle and 

Message Chain

 A request coming for the controller needs

 Ccu.Resource.getCcus -> 

 QueryHandler.getCcu ->

 RelationalApplicationServer.getCcu ->

 CcuDAO.GetCcu ->

 CcuRepository.findByExtCcuId

 Finally This is inherited from Spring.CrudRepository.

 This long tree makes the application difficult to debug and hard to change.

 A change will be a shotgun surgery as all these classes needs to be 
updated with the change.



Long parameter list

 These long parmeter list are hard to read.

 Compiler is not very happy:

 @SuppressWarnings({ "PMD.ExcessivePublicCount", "PMD.GodClass", 

"PMD.TooManyFields", "PMD.ExcessiveParameterList" })

public void copyMutableFieldsFrom(CcuDTO otherCcu) {

this.setOrganization(otherCcu.getOrganization());

this.setGln(otherCcu.getGln());

this.setCcuClass(otherCcu.getCcuClass());

this.setCcuSubclass(otherCcu.getCcuSubclass());

this.setCcuOwnerId(otherCcu.getCcuOwnerId());

this.setTareWeight(otherCcu.getTareWeight());

this.setMaxGrossWeight(otherCcu.getMaxGrossWeight());

this.setLength(otherCcu.getLength());

this.setWidth(otherCcu.getWidth());

this.setHeight(otherCcu.getHeight());

this.setTankVolume(otherCcu.getTankVolume());

this.setR002Compliance(otherCcu.getR002Compliance());

this.setZ015(otherCcu.getZ015());

this.setCertificateNumber(otherCcu.getCertificateNumber());

this.setCertificateExpiryDate(otherCcu.getCertificateExpiryDate());

this.setImoCertificateNumber(otherCcu.getImoCertificateNumber());

this.setImoCertificateExpiryDate(otherCcu.getImoCertificateExpiryDate());

}



Duplicated Code

 The abstract server was copied to make a new webapi.

 The new webapi-server does much of the same as the abstract server

 A changed in the API or data structure need to be changed in both

servers.

 Why?

 Time pressure from the customer.

 By the way. The abstract server is not very abstract.



Primitive Obsession

protected List<SearchResultDTO> ccuByPage(String key, Map<String, Object> params) {

try {

var q = query(key);

return jdbcTemplate.query(q, params, (rs, rowNum) -> {

SearchResultDTO sr = new SearchResultDTO();

sr.setCcuId(rs.getInt("ccuid"));

sr.setExtCcuId(rs.getString("extccuid"));

sr.setCcuClass(rs.getString("ccuclass"));

sr.setCcuSubclass(rs.getString("ccusubclass"));

sr.setMaxGrossWeight(rs.getBigDecimal("maxgrossweight"));

sr.setTareWeight(rs.getBigDecimal("tareweight"));

sr.setLength(rs.getBigDecimal("length"));

sr.setWidth(rs.getBigDecimal("width"));

sr.setHeight(rs.getBigDecimal("height"));

sr.setImoCertificateNumber(rs.getString("imocertificatenumber"));

sr.setImoCertificateExpiryDate(DateUtil.asLocalDateTime(rs.getTimestamp("imocertificateexpirydate")));

sr.setCertificateNumber(rs.getString("certificatenumber"));

sr.setCertificateExpiryDate(DateUtil.asLocalDateTime(rs.getTimestamp("certificateexpirydate")));

sr.setOwningOrgId(rs.getInt("owning_org_id"));



Primitive Obsession

 If any of these string has a typo it the application will blow up.

 They are uses for parameters in SQL files.

 The sql files has also primitive obsession.

-- getLegReadAccess

--#legReadAccessSubquery

AND l.id = :legId

;

-- #legReadAccessSubquery

SELECT distinct l.id

FROM Leg l

LEFT JOIN Journey j on j.id = l.journeyId



Summary

 There is a lot of good stuff also

 Still hard to read and hard to change

 Why?

 The sheer size of it

 The class hiearchy is hard to navigate

 A lot of the code is not obvbious written

 How to fix it? It not a easy task.

 Code smells, Object calistenics rules and TPP will help.



Thank you!

 Any Questions?

Eirik Dyrli

eirik.dyrli@bouvet.no


