
TDD - Flying

The Java Way



Introduction

 What i planned to do is not what i was able to do

 The plan was to implement the outside-in-kata in java

 Why?

 I am currently not working in any C# projects

 By doing this kata in java it will provide more value in a normal workday

 By investing more time i will remenber better.

 Why ony a plan?

 There was simply not enough time

 Holyday preperations

 Kids

 Bouvet Summer party



What did i got time to do?

 Doing the string calculator to warm up.

 Creating the skeleton for the Acceptance tests and Unit tests

 Creating most of the classes.

 Getting the PrintHeaderWhenThereAreNoTransactions to work

 Yey!

 (Obvious implementation)



My java setup



Why am i showing this?

 To show

 Code smells

 Violation of Object Calistenics rules

 Bad pratices

 Will focus on the Java backend part



Unit tests

 Hundreds of tests failing because they rely on LDAP user directory.

 Unit test fail beacuse they are missing the SMTP server.

 Integration test inside unit test project. Failing beause the database is 

missing (By the way: There is a integration test project also)

 And a lot of tests fail because they rely on precompiled code. (java classes

are generated from xsd files)

 Tests expect exceptions to be throwed

@Test(expected = IllegalArgumentException.class)

public void getTemplateShouldThrowIllegalArgumentExceptionIfTemplateDoesNotExist() {

provider.getTemplate(NON_EXISTING_TEMPLATE);

}



What is the test smells

 Tests should be independent and small

 Exception swallowing

 Unclear failing reason

 There extremely many excepetion thown upon compile



Code smell: Large class

 The LdapSource class

 1285 lines of code

 74 Methods

 How to fix?

 @SuppressWarnings({ "PMD.GodClass", "PMD.TooManyMethods", 

"PMD.ExcessiveClassLength" })

 And another 17 classes that needs @SuppressWarnings PMD.GodClass.



Code smell: Man in the middle and 

Message Chain

 A request coming for the controller needs

 Ccu.Resource.getCcus -> 

 QueryHandler.getCcu ->

 RelationalApplicationServer.getCcu ->

 CcuDAO.GetCcu ->

 CcuRepository.findByExtCcuId

 Finally This is inherited from Spring.CrudRepository.

 This long tree makes the application difficult to debug and hard to change.

 A change will be a shotgun surgery as all these classes needs to be 
updated with the change.



Long parameter list

 These long parmeter list are hard to read.

 Compiler is not very happy:

 @SuppressWarnings({ "PMD.ExcessivePublicCount", "PMD.GodClass", 

"PMD.TooManyFields", "PMD.ExcessiveParameterList" })

public void copyMutableFieldsFrom(CcuDTO otherCcu) {

this.setOrganization(otherCcu.getOrganization());

this.setGln(otherCcu.getGln());

this.setCcuClass(otherCcu.getCcuClass());

this.setCcuSubclass(otherCcu.getCcuSubclass());

this.setCcuOwnerId(otherCcu.getCcuOwnerId());

this.setTareWeight(otherCcu.getTareWeight());

this.setMaxGrossWeight(otherCcu.getMaxGrossWeight());

this.setLength(otherCcu.getLength());

this.setWidth(otherCcu.getWidth());

this.setHeight(otherCcu.getHeight());

this.setTankVolume(otherCcu.getTankVolume());

this.setR002Compliance(otherCcu.getR002Compliance());

this.setZ015(otherCcu.getZ015());

this.setCertificateNumber(otherCcu.getCertificateNumber());

this.setCertificateExpiryDate(otherCcu.getCertificateExpiryDate());

this.setImoCertificateNumber(otherCcu.getImoCertificateNumber());

this.setImoCertificateExpiryDate(otherCcu.getImoCertificateExpiryDate());

}



Duplicated Code

 The abstract server was copied to make a new webapi.

 The new webapi-server does much of the same as the abstract server

 A changed in the API or data structure need to be changed in both

servers.

 Why?

 Time pressure from the customer.

 By the way. The abstract server is not very abstract.



Primitive Obsession

protected List<SearchResultDTO> ccuByPage(String key, Map<String, Object> params) {

try {

var q = query(key);

return jdbcTemplate.query(q, params, (rs, rowNum) -> {

SearchResultDTO sr = new SearchResultDTO();

sr.setCcuId(rs.getInt("ccuid"));

sr.setExtCcuId(rs.getString("extccuid"));

sr.setCcuClass(rs.getString("ccuclass"));

sr.setCcuSubclass(rs.getString("ccusubclass"));

sr.setMaxGrossWeight(rs.getBigDecimal("maxgrossweight"));

sr.setTareWeight(rs.getBigDecimal("tareweight"));

sr.setLength(rs.getBigDecimal("length"));

sr.setWidth(rs.getBigDecimal("width"));

sr.setHeight(rs.getBigDecimal("height"));

sr.setImoCertificateNumber(rs.getString("imocertificatenumber"));

sr.setImoCertificateExpiryDate(DateUtil.asLocalDateTime(rs.getTimestamp("imocertificateexpirydate")));

sr.setCertificateNumber(rs.getString("certificatenumber"));

sr.setCertificateExpiryDate(DateUtil.asLocalDateTime(rs.getTimestamp("certificateexpirydate")));

sr.setOwningOrgId(rs.getInt("owning_org_id"));



Primitive Obsession

 If any of these string has a typo it the application will blow up.

 They are uses for parameters in SQL files.

 The sql files has also primitive obsession.

-- getLegReadAccess

--#legReadAccessSubquery

AND l.id = :legId

;

-- #legReadAccessSubquery

SELECT distinct l.id

FROM Leg l

LEFT JOIN Journey j on j.id = l.journeyId



Summary

 There is a lot of good stuff also

 Still hard to read and hard to change

 Why?

 The sheer size of it

 The class hiearchy is hard to navigate

 A lot of the code is not obvbious written

 How to fix it? It not a easy task.

 Code smells, Object calistenics rules and TPP will help.



Thank you!

 Any Questions?

Eirik Dyrli

eirik.dyrli@bouvet.no


