
TRAINING
RECAP
BY TOBIAS STÜBI

1. WALKING

2. RUNNING

3. FLYING

WALKING

MOB PROGRAMMING

the decision maker The Person typing on the
keyboard

Everyone else in the room

NAVIGATOR DRIVER MOB

TDD
Write a failing test

Write just enough
code to pass the

test

Improve the code
while passing the

test

RED

GREENREFACTOR

WHAT DO WE TEST?

WE TEST
BEHAVIOUR

NOT IMPLEMENTATION

ONE DEGREE OF FREEDOM
AT A TIME

TRANSFORMATION
PRIORITY
PREMISE

TRANSFORMATION STARTING CODE FINAL CODE

1 {} => nil return nil

2 nil => constant return nil return “1”

3 constant => constant+ return “1” return “1” + “2”

4 constant => scalar return “1” + “2” return argument

5 statement => statements return argument return arguments

6 unconditional => conditional return arguments if(condition)return arguments

7 scalar => array dog [dog, cat]

8 array => container [dog, cat] {dog = “DOG”, cat = “CAT”}

9 statement => recursion a + b a + recursion

10 conditional => loop if(condition) while(condition)

11 recursion => tail recursion a + recursion recursion

12 expression => function today - birthday CalculateAge()

13 variable => mutation day var day = 10; day = 11;

14 switch case

✓ Only one level of indentation per method

✓ Don’t use the ELSE keyword

✓ Wrap all primitives and strings

✓ First class collections (wrap all collections)

✓ Only one dot per line dog.Body.Tail.Wag() => dog.ExpressHappiness()

✓ No abbreviations

✓ Keep all entities small [10 files per package, 50 lines per class, 5 lines per method, 2 arguments per method]

✓ No classes with more than two instance variables

✓ No public getters/setters/properties

OBJECT CALISTHENICS RULES

RUNNING

REFACTORING

Rule of three

80 - 20 Rule

80% of the value in
refactoring comes from
improving readability

Breaking Object
Calisthenics Rules

WHEN?

https://sourcemaking.com/refactoring/smells

CODE SMELLS

https://sourcemaking.com/refactoring/smells

SOLID PRINCIPLES ++

Single Responsibility

Open/Closed

Liskov substitution

Interface Segregation
Dependency Inversion

Least Astonishment

COHESION AND COUPLING
Cohesion
says how strongly related and

coherent are the responsibilities
within modules of an application

Coupling
is the degree of interdependence
between modules of an application

FLYING

CONNASENCE

TEST DOUBLES
DUMMY

needed to complete the parameters’ list of a
method, but never used. Not common in

well-designed systems.
STUB

responds to calls with some pre-programmed output.
They need to be specifically setup for every test.

Fakes are handmade stubs.

MOCK
set up with expectations of the calls they are
expected to receive. Provide a way of verify

that a behaviour has been triggered correctly.
Spy is a handmade mock.

THE 4 RULES OF SIMPLE DESIGN

1. Passed the tests

2. Reveals intention

3. No duplication

4. Fewest elements

CLEAN / ONION / HEXAGONAL ARCHITECTURE

THE DOUBLE LOOP OF ATDD

THANKS!
Do you have any questions?

Contact:
stuebi@outlook.com

