
Using unit tests as 
a troubleshooting 
mechanism

By Jan Inge Nygård

20.05.2022



From Readme

But not implemented, or removed

Repo for NPOI Mapper (excel mapper)



Where the main test case relevant to me is

• Has Arrange, Act and 
Asserts already

• But some scenarios not 
relevant to me as well



My two main objectives
1. Map excel rows to C# model
2. Be able to have custom validation on column values (ie. null checks)

First case handled fine, with repo's attribute 
functionality

For the second case, we can also map like this

Maps up (behind the scenes) as expected

But only one error per row. Could also become 
cumbersome with multiple validations for each 
property



Handling custom scenarios

But for more complex scenarios, we may need more customization:

• To be able to run data validation independent of data fetching

• Especially as data fetch / load could be computationally heavy

• And for separation of concern

• This also requires overriding automapping, by setting Ignore attribute



..but which has some consequences
Problems:

• Not all degrees of freedom covered

• Less documentation (in this case)

• Uncertainty in behaviour of application

Solution: Use unit tests to learn the application behaviour, to achieve 
the goal of inducing a validation error.

Approach: Start with one unit test (as close to your given scenario), 
and build based on that (I ended up with ~10 tests).



I were able to boil my scenario down to this

Which gives the desired error

But I still had questions:

• Why does the error only triggers when first 
'true' is returned and then 'false'?

• In lack of insight, I initially thought this was
a bug



..which for a single column looked like this

• While this was better, I were 
still a bit confused

• Why the need for a clutter of
booleans?



So, I refactored with intent to create meaning

• Still returning booleans

• But now with meaning

• StageThree not discovered 
yet, so is a placeholder to 
indicate next step



..which looks like this

• This handles validation

• But for data mapping, my
idea is to do something
similar



..and then, a trillion tests later



..and with some troubleshooting



..we arrive at the following

• Where the test itself is more readable than before



..and the main method is more declarative

• I find that these abstractions give me a new / better insight



Learnings

• Quite useful to use unit tests, especially when making new 
microservices

• Unit tests are also useful as a means of understanding external 
packages or dependencies better, ie. if documentation is lackluster

• The "best" form of refactoring is to have better design upfront, thus 
avoiding having to fix or refactor design mistakes in the future



Questions?



Thanks for your time

Repo used:

• https://github.com/donnytian/Npoi.Mapper

Contact info:

• Email: jan.nygard@bouvet.no

• Github profile: https://github.com/jan93


