
C2 - Restricted

Some thoughts on

“Test functionality,
not the implementation details”

Per-Olav Rusås



C2 - Restricted

Pitfalls we want to avoid

“Every time I refactor, I need to change the tests”

“I can’t improve this code because it takes too much time 
to update the tests”



C2 - Restricted

What do we want to achieve?

TDD – use tests to drive the development, focus on 
features

Test the features important to the user



C2 - Restricted

What is an implementation detail?

Trying to define or find properties of an “implementation detail”

• The code we may want to refactor

• One of several potential ways of coding a feature
• Some are better. This is why we want to refactor.

• Left to the developer(s) to decide

• Something the user doesn’t need to know

• The non-public members of a class (or other encapsulation) are 
always implementation details



C2 - Restricted

Avoid testing implementation details -
Hide the details

Avoid leaking internal details

Too general structures:

• Don’t let the internal data structures (like containers) in a class or other 
encapsulation be available outside the encapsulation. 

Avoid revealing the construction of an object:

• Don’t let any field variable, especially reference type fields, be available with 
getters or setters.

What about properties?

I think properties are good if they represent obvious states to be viewed or 
changed.



C2 - Restricted

Avoid to test implementation details -
Don’t pair tests and methods
• Don’t think like this:

• “I need one test per method”

• “I’ve written a method, now I need a test” (well, what about public APIs?)

• Better:
• Make tests for a logical features.

Don’t expect each feature to be represented by a single piece of code.

• Use a test naming policy which says what a piece of software (an instance of a 
class, a web component, a web page, an application), should do.

• Rethink what the Unit in Unit testing is



C2 - Restricted

Exceptions to the rule?

Long data manipulating processes, with many defined (mathematical) 
intermediate steps.

If each step is a detail, still want to test the detail? Maybe.



C2 - Restricted

A citation

I find the easiest way to avoid testing implementation details is to 
pretend I'm not a developer, and try to perform a specific task in 
my application just like a user would.

Max Rozen writing about testing React applications https://testingreactjs.com/dont-test-implementation-details-
react

https://testingreactjs.com/dont-test-implementation-details-react


C2 - Restricted

A thought

How does the TDD design and development process compare to
“Write tests. Not too many. Mostly integration”?

“Write test. Not too many. Mostly integration” is from a Tweet from Guillermo Rauch in 2016,
see also blog post by K.C.Dodds at https://kentcdodds.com/blog/write-tests


