Improvements in
the testing of a
Golang service from
my customer project

Using the TDD principles learned at Alcor Academy

Daniel Garip

* It is a surface aggregation service

* Inputis data called surface objects

* The core of the service is to do a calculation on the input (n
surface objects) and return an output object (Simplified)

* The calculation can be: Mean, min, max, std and percentile

* Tried utilizing TDD with pair programming before the course

- i o
The current test setup

o

e Tests in own file * While learning about TDD | found a lot of the test smells in our
tests

® o,
Test coverage 61.3% * Not optimal testing and a lot of overlap

e 32 total tests * Big room for improvement by utilizing the aspect of correct TDD

Naming of tests S

e g
b

Arrange Act Assert

Number of assertions |

 This breaks with TDD habits

* Tests should only test one single
behaviour

* Only one logical assertion per test

TDD Habits first principles

« Fast. They should run very often, hence they must be
fast: one second matter here

* Isolated. They should be no dependency between tests,
hence they must run in any order

« Repeatable. They should always have the same result
when run multiple times

« Self validating Only two states: red or green.

« Timely. Written BEFORE the code they suppose to test

To sum up

* Our tests are way to big (testing too
much in each test)

* We have overlapping tests

* Naming of the tests should be even
more specific.

* Have actually been using some aspects of
Transformation Priority premise

Thank You

Daniel Garip

Github: danieltg96

mailto:Daniel.garip@soprasteria.com

