

Definition of Refactoring

“to restructure software by applying a series of
changes without changing its observable
behavior.”

Martin Fowler

Tennis-Kata
Walking, Lesson 1

* Game of Tennis

* Three different implementations
 Totally different appearance

* All pass the same tests

e Same result

public interface TennisGame {
void wonPoint(String playerName);
String getScore();

public String getScore() {
String score =

int tempScore=8;

if (m_scorel=nm_score2)

{
switch (m_scorel)
{
case 0:
score = "Love-All";
break;
case 1:
score = "Fifteen-All";
break;
case 2:
score = "Thirty-Al1l";
break;
default:
score = "Deuce";
break;
+
}
else if (m_scorel=4 || m_score2z=4)
{
int minusResult = m_scorel-m_score2;
if (minusResult=1) score ="Advantage playerl";
else if (minusResult =-1) score ="Advantage player2";
else if (minusResult=2) score = "Win for playerl”;
else score ="Win for player2";
}
else
{
for (int i=1; i<3; i+)
{
if (i=1) tempScore = m_scorel;
else { score+="-"; tempScore = m_score2;}
switch(tempScore)
{
score+="Fifteen";
break;
case 2:
score+="Thirty";
break;
case 3:
score+="Forty";
break;
}
+
}

return score;

public String getScore(){

string score = "";
if (Plpoint = P2point & Plpoint < &)
{

if (P1lpeint=0)

score = "Love";
if (Plpoint=1)

score = "Fifteen";
if (Plpoint=2)

score = "Thirty";

score += "-ALl";

i

B

(Plpoint=P2point && Plpoint=3)
score = "Deuce";

i

4

(Plpoint > © §& P2point=0)

if (P1lpeint=1)

Plres = "Fifteen";
if (P1point=2)

Plres = "Thirty";
if (Plpoint=3)

Plres = "Forty";

P2res = "Love";

score = Plres + "-" + P2res;

i

4

(P2point > 0 && Plpoint=0)

if (P2point=1)

P2res = "Fifteen";
if (P2point=2)

P2res = "Thirty";
if (P2point=3)

P2res = "Forty";

Plres = "Love";

score = Plres + "-" + P2res;

i

4

(P1point>P2point && Plpoint < 4)

if (Plpoint=2)
Plres="Thirty";

if (Plpoint=3)
Plres="Forty'

if (P2peint=1)
P2res="Fifteen";

if (P2point=2)
P2res="Thirty";
score = Plres + "-" + P2res;

i

4

(P2point>Plpoint G& P2point < 4)

if (P2point=2)
P2res="Thirty";
if (P2point=3)
P2res="Forty’
if (Plpoint=1)
Plres="Fifteen";
if (Plpoint=2)
Plres="Thirty"

score = Plres + "-* + P2res;

And more...

if (Plpoint > P2point && P2point = 3)

+

public String getScore() {
string s;
if (pl< 4 86 p2 < 4 86 '(pl + p2 = 6)) {

string[] p = new Sstring[1{"Love
s = plpil;
return (pl = p2) ? s + "-ALL" : s + "-" + p[p2];
¥ else {
if (p1 = p2)
return "Deuce”;
s =pl>p2 7 pIN : paN;

return ((pl-p2)*(p1-p2) = 1) ? “Advantage " + s :

, "Fifteen", "Thirty", "Forty"};

"Win for "

(Plpoint — P2point 8& Plpoint < 4)
{

if (Plpoint=0)

Ga me 2 score =|"Love";

if (Plpoint$#=1)

score =|"Fifteen";
if (P1lpoint#=2)
o Very Iooooong score =|"Thirty";
score += "-All";
* Lots of redundant hardcoded stuff (e.g.
if J(P1lpoint=P2point && Plpoint = 3)
ScoreS) score = "Deuce";

- £
(
Lots of if's (Plpoint > 0 8& P2point=0)
{

if (Plpoint=1)

Plres = ["Fifteen";
if (P1lpoint==2)

Plres = ["Thirty";
if (Plpoint=3)

Plres = ["Forty";

P2res "Love";

Plres + "-" + P2res;

score

Game 3

L Very Short public String getScore() {

String s;

* Cryptic [iF (p1 < 4 68 p2 < 4 88 1(pl + p2 = 6)) { |
String[] p = new String[]{"Love", "Fifteen", "Thirty", "Forty"};

e Lots of oneliners s = plpllL;
. . PetUPnIEpl — p2) ? s + "-ALL" : s + "-" + p[p2];|
(calculations, ternaries, L elee 1
etc.) if (p1 = p2)

return "Deuce";
S = pl > p2 ? pIN : p2N;
return ((pl-p2)*(pl-p2) = 1) ? "Advantage " + s : "Win for " + s;

Game 1

A mix of the other two
e Lots of ifs

* Lots of hardcoded
scores (there’s more

near the end @)

if (m_scorel=—m_score2)

)

"Love-All";

"Fifteen-A11";

"Thirty-Al1";

"Deuce";

|| m_score2=4)

= m_scorel-m_scorez2;

if (minusResult=—1) score ="Advantage playerl";

else if l(minusResult =2) score

{
switch (m_scorel
{
case 0:
score =
break;
case 1:
score =
break;
case 2:
score =
break;
default:
score =
break;
¥
}
else if (m_skorel =4
.[
int minusResult
else if J(minusRe
else score ="Win
}
else

sult =—-1) score

for player2";

="Advantage player2";
"Win for playerl";

Original implementations very different

What about (refactored) results?

public String getScore() { public String getScore() { public String getScore() {
if (scoreIsEqual()) { if (scoreIsRegular()) { if (isEqualScore()) {
return getEqualScore(); return getRegularScore(); return getEqualScore();
} } r
if (scorelIsRegular()) { if (scoreIsEqual()) { if (isRegularscore()) {
return SCORES[playerlPoints] + "-" + SCORES[player2Points];
return getRegularScore(); return DEUCE;)
b }
if (hasWinner()) {
if (scoreIsAdvantage()) { if (isScoreAdvantage()) { return String.format(WIN_TEMPLATE, getPlayerInFront());
return getAdvantageScore(); return String.format(¥
} ADVANTAGE_TEMPLATE,
getleadingPlayer() return String.format(ADVANTAGE_TEMPLATE, getPlayerInFront());
return getWinningScore();); by
b ¥

return String.format(WIN_TEMPLATE, getLeadingPlayer());

Refactoring helps us find the essence

* Even though we had completely different starting points

 All solutions boil down to a very similar approach

Why should we refactor? [Part]

Obvious reasons...

e Cleanup, reformat code
 Remove duplicate code
* Give better names

e Simplify

* Housekeeping / “Boy Scout Rule”

Why should we refactor? [Part Il]

Hidden benefits...

. | '.‘i..r- -

7

L
A

=
‘ 'y. :

Why should we refactor? [Part Il]

Hidden benefits...

 When we implement, we deal with (technical) details
* “We are in the hole”
e Dealing with “dirty” details

. .-
* When we refactor, we deal with hig
e “We get ou ole, and t

Why should we refactor? [Part Ill]

Because we can!

Herbert can’t...

... and so can’t these guys:

Mavybe that’s why it’s called “soft”-ware?

* A huge advantage we have
* In most other jobs this is not possible

* We can easily change working stuff

Why should we refactor? [Part IV]

We spend much more time reading code, than writing code.

* Developing software is communication
* With the computer obviously

e But also with the other programmers...
... or me in 6 months

Reason to refactor - Recap
* Because we can
* Find the essence

* (Re)think about problem/solution on
different levels

* Improve communication

rite code that a computer can understand. Good programmers
write code that humans can understand.”

Martin Fowler

In other words:
e have the chance to be a good programmer.

Any questions?

Now...

