

Naming as a Process

Jörg Decker
25.03.2022

The Path to Good Names?

Why is it so complicate?

● Name should describe what the code should
do

● Describe side effects
● Should be different from others
● Should be homogeneous
● Should be understandable
● Not too long
● ...

Why is it so important?

„Programmers spend around 60-70% of
their entire programming time reading
code.“

According to an analysis from Eclipse data

Bugs come from incomplete understanding

Mistakes happen when our mental model
doesn’t match the reality of the code.

Naming as a process

The solution … annoyingly simplified

At each step, I look at one part of the code,
understand one kind of thing that is
happening, have an insight, and write it
down. I repeat this until I have moved one
step down this list. I keep going until I have
a good enough name for my purpose.

Arlo Belshee

Get to Obvious Nonsense

The most terrible kinds of names are:
● Misleading names
● Missing (code is part of something else)

Fixing Missing Names

Step 1: Look at long things (classes,
methods, files, …)

Step 2: Look for chunks that hangs together

Step 3: Extract it as Applesauce

Fixing Missing Names

● The body of a control structure is often a
good target

● If there are multiple control structures
extract them into seperate methods

Fixing Misleading Names

● Step 1: Look for under- or misinformation
● Methods named by lifecycle
● Variable named the same as its type
● Method names that leaves out critical information
● Any name that ends in -er or -utils

● Step 2: Rename it to Applesauce

Get to Honest

● Look for one thing the code does
● Rename it to something better which includes

● One thing it does
● Clarity what we don‘t know yet

e.g. probably_doSomethingEvilToTheDatabase_AndStuff
● Be specific
● it‘s honest but not complete

Get to Completely Honest

This level makes it unnecessary to read
the code. We want them to be able to
trust that the name includes absolutely
everything the method does so they can
read and understand calling methods
without having to read the method we’re
fixing.

Get to Completely Honest

● Expand the Known
● Narrow the Unknown

e.g:
● _AndDoSomethingToDatabaseAndStuff
● Insight: the code doesn‘t write
● New name: _AndWriteSomethingToDatabaseAndStuff

Repeat these steps
● Be precise
● e.g:

parseXMLAndAddFlightToDBAndLocalCacheAndAddToScreenIfVisible

Get to Does the Right Thing

● Part 1: Look only at the name
● Part 2: Look for one responsibility to separate
● Part 3: Structural refactoring

● Moving responsibility
● Encapsulation

e.g.
● ParseXML
● SaveFlightToDB
● ShowFlightOnScreenIfVisible

Get to Intent Revealing

● Part 1: Look at the calling methods
● Part 2: Look for the code‘s purpose
● Part 3: Write down the purpose by

renaming the target

e.g.
● StoreFlightToDatabaseAndShowOnScreenI

fVisible → beginTrackingFlight()

Get to Domain Abstraction

● Shared Context for some set of code
● Looking for Primitive Obesession
● Write down by adding new ValueObjects

Naming as a process

● Get to Obvious Nonsense
● Get to Honest
● Get to Completely Honest
● Get to Does the Right Thing
● Get to Intent Revealing
● Get to Domain Abstraction

Naming as a process

● Does it work?
● We scratched the surface
● Highly interwoven with several

refactoring steps towards DDD
● Good naming is a process, not a single

step

Naming as a process

● Check it out at
https://www.digdeeproots.com/articles/on/
naming-process/ by Arlo Belshee

Thanks for your audience

● Any questions?

Jörg Decker

joerg.decker@css.ch

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19

