
Why is it so hard to play like a KISS
By Pierluigi Fornoni

Table of Contents

Intro

What is KISS ?

Kiss enemies

The beginning..

Louis Armstrong’s improvisations permanently altered the

landscape of jazz by making the improvising soloist the

focal point of the performance.

Louis Daniel Armstrong (August 4, 1901 – July 6, 1971)

Evolution: from Classic Jazz to Bebop

- 1920 Early jazz, New Orleans (Armstrong)

- 1930 Swing Big Band (Ellington, Count Basie,…)

- 1940 Bebop

Increasingly complex chord changes

over which soloists improvised

1959 The «Modal» Revolution

Where most forms of jazz had built increasingly complex chord

changes over which soloists improvised, Davis shifted to using

modes as the basis for song structure. Modal composition

allowed Davis to slow down and simplify the structure of the

piece.

Miles Davis (1926-1991) recorded Kind of Blue

 Easier to understand for the listener
 Comfortable to “extend” for the improviser

What is KISS

Perfection is achieved, not when there is nothing more to add,
but when there is nothing left to take away.

— Antoine de Saint-Exupery

KISS, an acronym for keep it simple, stupid, states that most systems work best if they are kept simple
rather than made complicated;
therefore, simplicity should be a key goal in design, and unnecessary complexity should be avoided.

— wikipedia

Why KISS ?

Kelly Johnson (1910-1990), was the lead engineer

at the Lockheed Skunk Works

He told the designers that whatever they made had to be something
that could be repaired by a man in a field with some basic mechanic’s
training and simple tools.

If their products weren’t simple and easy to understand – they would
quickly become obsolete in combat conditions and thus worthless.

Why is it so hard to be simple?

The theory is good, but the practice is a different league.

If we know and agree kiss principles, why we still lack in implementing them?

Reason 1: We are humans after all

We don’t realize that an easier solution exists. Sometimes for lack in business knowledge or
misunderstandings, sometimes for technical part.

Solution:

 More engagement between business actors and developers

 Knowledge of principal code smells and refactoring patterns

Reason 2: Speed

Change a line of code is faster and easier and less error prone than modifying class relations.

If something turns out to be «smelling», we will fix it next iteration, not thinking that in next
iteration we we’ll have same pressure and same complexity as in this one.

Solution:

 Test coverage + continuous refactoring

 Fight against temptation

Reason 3: Influence

Spending time in refactoring + better process knowledge is sometime hard and slow.
It happens that management underestimate it and put some kind of pressure.

It’s just another «if», why you made so complicated?

Solution

 Resist (politely)

 Better management engagement in process
 Make small changes fast by applying TDD and KISS in previous iterations

Reason 4: YAGNI (Thinking Ahead)
Let’s say you need to create a function that calculates the sum of 2 and 3. How would you
implement it?

public int sum(int x, int y) {

return x + y;

}

public int sumTwoAndThree() {

return 2 + 3;

}

Solution
 Always implement things when you actually need them,

never when you just foresee that you need them

Amateur Pro

Reason 5: Abuse of Patterns

For human reasons (and Dunning Kruger low), sometimes we abuse of what we think to know.

Solution

 Always implement things when you actually need them as simply as possible

 Never introduce an interface or abstract class for only one implementation.
Create an abstraction only when you actually need it.

Reason 6: No need to be KISS

KISS can be in some conditions ignored (really!)
In particular if the code you produce will not be maintained (POC, …)
But be honest… it never happens.

Solution
 Be realistic on expected life duration of code you produce.

There are little chances that all code you did will be re-developed
from scratch after a demo

Conclusion

If you need to choose between two solutions, choose the simplest one.

Constantly work on simplifying your code base.

There are two ways of constructing a software
design: one way is to make it so simple that
there are obviously no deficiencies, and the
other way is to make it so complicated that
there are no obvious deficiencies.

Thank you
Pierluigi Fornoni, software engineer-eoc

pierluigi.fornoni@eoc.ch

References:
 The Jazz Theory Book (Mark Levine 1995)
 Kinf Of Blue (Miles Davis, Columbia 1959)
 A Detailed Explanation of The KISS Principle in Software
 KISS (Keep it Simple, Stupid) - A Design Principle

https://www.amazon.com/Jazz-Theory-Book-Mark-Levine/dp/1883217040
https://www.jazzwise.com/features/article/kind-of-blue-how-miles-davis-made-the-greatest-jazz-album-in-history
https://thevaluable.dev/kiss-principle-explained/
https://www.interaction-design.org/literature/article/kiss-keep-it-simple-stupid-a-design-principle

