
NAMING AS A PROCESS 

IL MONDO ERA COSÌ RECENTE, CHE MOLTE COSE ERANO PRIVE DI NOME, 

E PER CITARLE BISOGNAVA INDICARLE COL DITO

(GABRIEL GARCÌA MÀRQUEZ)

Massimo Caccia

Arlo Belshee’s approach for naming



NOMINARE MALE LE COSE, È PARTECIPARE ALL’INFELICITÀ DEL MONDO

(ALBERT CAMUS)



GIOVANOTTO, I NOMI SONO COSE POTENTI

NON SI PUÒ USARLI IN GIRO SENZA NESSUN MOTIVO

(RICK RIORDAN)

NAMING IS A CONTINUOUS PROCESS
Often we try to find the perfect name on the first attempt, but actually naming is a process 
and Arlo Belshee’s 7 stages of naming outline the concept of naming being a continuous process

An important part of the development process is to ask how the name can change, rather than why it shouldn’t 
change. Naming and refactoring is a continuous path, and this idea of the 7 stages highlights the importance of 
taking every opportunity you can to improve it. This in turn feeds into the idea of slow change, which is gradual 
change that may not be immediately obvious but overtime causes enormous change.



“Naming as a Process” highlights a way to extract domain knowledge out of the code 
and in to human readable form through the names of variables and methods.

DIAMO UN NOME E DOPO NON SAPPIAMO 

CHE NOME DARE AL NOME

(ANTONIO PORCHIA)



There is a suggested process for naming extracted chunks of code that aims to 
highlight any latent domain knowledge in a code block. The suggested steps for 
naming an extracted block of code or improve names are the following:

• Missing names to Nonsense names
• Nonsense names to Honest names
• Honest names to Honest and Complete names
• Honest and Complete names to names that Do the Right Thing
• Names that Do the Right Thing to names that show Intent
• Names that show Intent to names that form a Domain Abstraction

DIAMO UN NOME E DOPO NON SAPPIAMO 

CHE NOME DARE AL NOME

(ANTONIO PORCHIA)



Nonsense - You follow your hunch and extract a code block without knowing much 
about the ultimate function of the block in the program… At this point it doesn’t make 
sense to waste time trying to think of a specific or relevant name, since the name is 
likely to change as you continue to develop understanding. You name the newly 
extracted method applesauce and move on.

Nothing - You begin with nothing. There are no useful method names in the code… just 
a series of calls to other methods from constructed objects, conditionals, and a bunch of 
poorly named variables… At this point the code is in its least readable state, but you 
do have a hunch that certain blocks could be grouped together in some way and 
described more semantically.

DIAMO UN NOME E DOPO NON SAPPIAMO 

CHE NOME DARE AL NOME

(ANTONIO PORCHIA)



Honest and Complete - Upon further investigation, you realize the code is not just operating 
on the UserPreferences object, but also making a call to a payments service by constructing 
an intermediary Payments object, and it is writing to a database that contains invoices. You 
rename the function again to: 
GetUserPreferencesAndConstructPaymentsObjectAndSendToPaymentServiceAndWriteToInvoiceDB since 
this is the complete description of functionality in this code block.

Honest - You begin to take a closer look at applesauce and realize that it is doing quite a 
few things: It seems to be operating on some object that contains user preferences, and makes 
a call to a payments service with user information. You update the method name to 
GetUserPreferencesAndSendToPaymentService since that is about as honest as you can be when 
figuring out what the heck is going on.

DIAMO UN NOME E DOPO NON SAPPIAMO 

CHE NOME DARE AL NOME

(ANTONIO PORCHIA)



Domain Knowledge - Whew that is one long method name! At this point, the complete 
description of the name is indicative that the code block is doing too much. A rule of 
thumb: methods should have a single responsibility, and the use of the word “And” in a 
complete method description is a red flag that the method should be broken up. A 
suggestion at this point is to break up the larger method along the “And” boundaries in 
its name, which will delegate one unique concern to each method. These method 
descriptions get you closer to latent domain knowledge stored within the original code: 
in this case, the sequence of steps to construct and write payments to the invoice DB!

DIAMO UN NOME E DOPO NON SAPPIAMO 

CHE NOME DARE AL NOME

(ANTONIO PORCHIA)



BISOGNA SEMPRE CHIAMARE LE COSE CON IL LORO NOME. LA PAURA 

DEL NOME NON FA CHE AUMENTARE LA PAURA DELLA COSA STESSA

(DAL FILM HARRY POTTER)

Conclusion

At this point, you haven’t written any new code… You’ve just taken spaghetti code that previously existed, 
and have refactored it in a way that makes it more readable and makes the underlying domain knowledge 
more apparent to the reader.

Not only did it help you get a better understanding of a particular code block, but it will also prevent 
the next poor soul who needs to make a change in this block from going through the same process of 
understanding that you just went through.

You’ve effectively reduced the amount of time to comprehend the code for the next developer who passes 
through, which is unarguably valuable.



ANY QUESTION ?

I GIORNI VENGONO DISTINTI FRA LORO, 

MA LA NOTTE HA UN UNICO NOME.

(ELIAS CANETTI)

Links:
https://www.digdeeproots.com/articles/on/naming-process/
https://www.digdeeproots.com/articles/naming-as-a-process/
https://www.digdeeproots.com/articles/get-to-obvious-nonsense/
https://www.digdeeproots.com/articles/get-to-honest/
https://www.digdeeproots.com/articles/get-to-completely-honest/
https://www.digdeeproots.com/articles/get-to-does-the-right-thing/
https://www.digdeeproots.com/articles/get-to-intent-revealing/
https://www.digdeeproots.com/articles/get-to-domain-abstraction/

https://bambielli.com/posts/2017-02-26-read-by-refactoring-pt-2/

https://softwareengineering.stackexchange.com/questions/404195/should-i-use-and-in-a-function-name



THANKS FOR YOUR ATTENTION !

DARE UN NOME ALLE COSE È LA GRANDE E SERIA 

CONSOLAZIONE CONCESSA AGLI UMANI

(ELIAS CANETTI)

Massimo Caccia
Software Development

Ente Ospedaliero Cantonale
Area ICT
Viale Stefano Franscini 4 
CH-6500 Bellinzona

+41 (0)91 811 13 74
massimo.caccia@eoc.ch
www.eoc.ch


