
Alcor Academy Foundational Training
A course retrospective

Ermanno Scanagatta
github.com/ermannos



Why this presentation?

The course lasted 9 weeks, full of new concepts, new habits 
and great experiences.

I'd like to recap the steps and concepts to gain a final 
perspective view



WALKING

Pair programming

• Rules and roles

• Strong type PP

• MOB Programming



WALKING /2

TDD – how to write new code starting from a test

• Design loosely coupled modules → testable

• What to test → behaviour not implementation

• How to write tests 
• adopt a expressive naming convention (MyClassShould.DoSomethingInteresting)

• test one behaviour at a time

• one logical assertion per test

• tests must be indipendent

• don't mix state and collaboration

• baby steps (RED test → GREEN test → REFACTOR)

• TPP (Fake impl. → Obvious impl. → Trangulation)

• calisthenics



About WALKING

WOW!
ü I really enjoyed MOB programming, 

collaboration was very effective
ü TDD, as experienced in Katas, seems to be a 

quick and useful way to grow a module

HOW ABOUT?

ü At this point it was difficult for me to 
understand how to apply this kind of TDD in 
real world situations



RUNNING

Focus is on Refactoring

• When? → Rule of 3, Calisthenics broken

• What? → Maximize value with Pareto principle (readability before 
design)

• How? → Stay in GREEN, use IDE

• Parallel Change → expand/migrate/contract



RUNNING /2

Bad code indicators are usefult to find what to refactor first

• Code Smells

• SOLID++ principles

• Coupling and Cohesion



About RUNNING

WOW!
Ø Learn to effectively do reafctoring was great, 

we will do a lot of it
Ø Clear taxonomies help to have a common 

language and to agree a solution with the mob

HOW ABOUT?
Ø While I easily memorize concepts, for me is 

difficult to keep all the names in mind



FLYING

• Connascence: another way to measure entropy of the system (and to guide 
refactoring)

• Test Doubles: how to replace parts of the module to test it (Stubs & Mocks)

• 4 rules of simple design (Correct, expressive, no repetittions, least amount of 
modules)

• Onion/Hexagonal Architecture (layers isolate concerns and helps keeping 
entropy low)

• Outside-in

• Acceptance test (ATDD)



About FLYING

WOW!
Ø ATDD Kata revealed all the beauty in the final 

lesson and dispelled my previous doubts

HOW ABOUT?
Ø I should learn Mockito



The end

Thanks Marco & Alessandro, great job!

Questions?


