
Refactoring

16.12.2021
Maurizio Di Florio

Progetto GECO DPI / Pag. 2

Red - Green - Refactor

Progetto GECO DPI / Pag. 3

Brao Mona

Refactoring – the right way

Progetto GECO DPI / Pag. 4

 Constantly (boy scout rule)

 Keep your code clean so it is easier to understand, modify,

extend

 Aggressively

 tackle-fast (fail-fast): tomorrow could be worse

 No fear => trust your tests!!

 Aggressively but progressively (always in green)

Precondition: Reasonably good test base

Refactoring - Do we trust our tests?

Progetto GECO DPI / Pag. 5

 Make good tests!

We can cheat Sonar but we can’t cheat ourselves. Our

colleagues neither.

 But tests are never infallible!

Refactoring - where to start

Progetto GECO DPI / Pag. 6

 Pareto Rule

 Low hanging fruits (improve readability)

 Renaming

 Replace comments with compiling code
 Comments are usually code smell

 Reduce method length (3-4 lines?!)

 Remove duplication

 Improving readability => duplication emerges

Refactoring - where to continue

Progetto GECO DPI / Pag. 7

 Pareto Rule

 Once we better understand what the code does:

 Design refactor (20%)

 Extract methods in new classes

 Parallel change

 Remove Primitive obsession

What to test carefully

Progetto GECO DPI / Pag. 8

 Pareto Rule

 Where 80% of the bugs arise. Let’s search them there!

 Date

 Complex boolean expressions “&& || () !” (=> extract one boolean

for each inner-condition)

 Parallelism (unpredictable flow)=> deadlocks e race conditions

 "Off by one" error. Buffer size, numeric Types range

 (i.e. java byte -128 to 127)

 Type casting

 Floating-point numbers (Patriot Missile Failure – 1991

 Approximation 0.0034 sec/hour

Next Alcor courses

Progetto GECO DPI / Pag. 13

 Full rollback every 2 minutes if the code does

not compile

 How to code with no use of copy/paste

Thank you!

maurizio.diflorio@eoc.ch

