Software Design
World, Rules & Relationship

Agenda

= Object Oriented rules and tools
= What| am doing at work?

= \What can | use of this course?

Object Oriented rules and tools

Object Oriented rules 1

Calistenics and Code smells

= Only one level of indentation per method Long Method
= Don’t use the ELSE keyword Long Method / Duplicated Code

= Wrap all primitives and strings Primitive Obsession
= First class collections Divergent Change / Large Class

= One dot per line Message Chains

» Keep all entities small @~ Large Class / Long Method / Long Parameter List
= No classes with more than two instance variables Large Class

= No getters / setters / properties Feature Envy

= All classes must have state, no static methods, no utility classes Lazy Class / Middle man / Feature

envy

Object Oriented rules 2

SOLID principles

= Single Responsibility SRP
= Open Closed OCP

= | iskov Substitution LSP

= |nterface Segregation ISP

m Dependency Inversion DIP

Object Oriented rules 3

EverythinglsAnObject.

Objects communicate by sending and receiving messages (in terms of objects).
Objects have their own memory (in terms of objects).

Every object is an instance of a class (which must be an object).

The class holds the shared behavior for its instances (in the form of objects in a program list)

[
o 0 A~ W N

To eval a program list, control is passed to the first object and the remainder is treated as its

message.

I'm sorry that | long ago coined the term “objects” for this topic because it gets many
people to focus on the lesser idea. The big idea is “messaging.” (2)

(1) https://wiki.c2.com/?AlanKaysDefinitionOfObjectOriented

https://wiki.c2.com/?AlanKaysDefinitionOfObjectOriented
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html

Object Oriented tools

Refactoring

9 Fix code smell by procedure (sometimes provided by IDE)

Rules & tools relationships

Object calistenics

prevent /
v

Code smells Single responsability

/X \
suggests 1mprove
N/

Refactoring Open closed

Interface Segregation

Rules Code

public class Car {
public int CurrentMileage(){ ...}
public void TravelTo(Location location){ ...}
public void Save(){ ...}

}

-

Interface Segregation

{

| Single responsability |

L.

{ Open closed

Rules Code

=) Single Responsability Behaviours attractor

=) Open Close
» X Interface Segregation

public void SaveToFile(){ ...}
public void toJson(){ ...}

What am | doing at work?

In which world does my code belong to?

= Every world has own rules
= Whatam | doing?
= Procedural code
= Functional React Components
= Hooks
m Stores implements Funtor and Foldable
= Eventimplements Profuntor and Functor

B Combine stores and events

m | enses

= Handling effects

Functional React Component

React Suspense is to a Monad as Hooks are to Applicative Notation

https: /www.freecodecamp.orghews/when-to-use-react-suspense-vs-react-hooks-f66ef94cb54f/

https://www.freecodecamp.org/news/when-to-use-react-suspense-vs-react-hooks-f66ef94cb54f/

. esson learned

m | anguage is not the paradigm
s Respectrules

= Compose

= \Write declarative code

Object Oriented

function TicTacToe() {
let player = Player.X;
const board = Board();

const getNextPlayer = () = {
if (player = Player.0) {
return Player.X;

}

return Player.O;

b

const play = (square) = {
if (board.hasBeenPlayed(square)) f{
return;

}

board.play(square, player);
player = getNextPlayer();

Code

}

const getPlayer = () = {
return player;

¥

() = {
board.getWinner();

const getState
const winner

if (winner == Player.None) {
return State.InProgess;

3

if (Player.X == winner) {

return State.PlayerXwins;

}

return State.PlayerOWins;

b

return { getPlayer, play, getState };

Functional Programming Code

class I0 {
constructor(fn) {
this.unsafePerformIO = fn;
} ap(f) {
return this.chain(fn = f.map(fn));
[util.inspect.custom]() { }
return 'I0(?)';
}
chain(fn) {
return this.map(fn).join();
static of(x) { $
return new IO(() = x);
} join() {
return new IO(
() = this.unsafePerformIO().unsafePerformIO()
map(fn) {)
return new IO(compose(fn, this.unsafePerformIO)); }

} }

“Bad programmers worry about the code. Good programmers worry about data structures and their
relationships.”

— Linus Torvalds

Across Boundaries

OOP Rules

Use setter/ getter
to translate
doto Form OO world

to ancther world

Object Oriented World Relationship World

MAPPING,

i~

Rule no getter & setter

FP Rules

Functional Pmﬁfr‘O\mm?n? Real world

Pure Function (no side effects)
F‘.fe_:;ys.‘te.m

Network
Dotabase

Sl:/s‘te.m

"\-...1___

Rgfm‘tinnahip World

Object Oriented World

Read / Write Aggregate —

MAPPING,!

ORM

Object Oriented World

Read / Write Aﬂﬁre_ﬁfm‘be.

MAPPING,
ORM
F:i,?h't Lmzl}(vs Eager
View
'Di"‘ﬁr.h:':)EMOL'tE,.LQEYIH:t;E«.!;Z&t:ﬂHEXEG_Ft;EH v
could not Eni’tiahzg proxy — no Session.

Questions?

Thank you

David Nussio, Software Engineer - EOC

) davidnussio

¥ (@davidnussio

https://github.com/davidnussio
https://github.com/davidnussio

