
Software Design
World, Rules & Relationship



Agenda
Object Oriented rules and tools

What I am doing at work?

What can I use of this course?



Object Oriented rules and tools



Object Oriented rules 1

Only one level of indentation per method 👉 Long Method

Don’t use the ELSE keyword 👉 Long Method / Duplicated Code

Wrap all primitives and strings 👉 Primitive Obsession

First class collections 👉 Divergent Change / Large Class

One dot per line 👉 Message Chains

Keep all entities small 👉 Large Class / Long Method / Long Parameter List

No classes with more than two instance variables 👉 Large Class

No getters / setters / properties 👉 Feature Envy

All classes must have state, no static methods, no utility classes 👉 Lazy Class / Middle man / Feature

envy

Calistenics and Code smells



Object Oriented rules 2

Single Responsibility SRP

Open Closed OCP

Liskov Substitution LSP

Interface Segregation ISP

Dependency Inversion DIP

SOLID principles



Object Oriented rules 3
1. EverythingIsAnObject.

2. Objects communicate by sending and receiving messages (in terms of objects).

3. Objects have their own memory (in terms of objects).

4. Every object is an instance of a class (which must be an object).

5. The class holds the shared behavior for its instances (in the form of objects in a program list)

6. To eval a program list, control is passed to the first object and the remainder is treated as its

message.

I’m sorry that I long ago coined the term “objects” for this topic because it gets many
people to focus on the lesser idea. The big idea is “messaging.” (2)

(1) https: //wiki.c2.com/?AlanKaysDefinitionOfObjectOriented
(2) http: //lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html

https://wiki.c2.com/?AlanKaysDefinitionOfObjectOriented
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html


Object Oriented tools

🛠️ Fix code smell by procedure (sometimes provided by IDE)

Refactoring



Rules & tools relationships



Rules Code
public class Car {

public int CurrentMileage(){...}

public void TravelTo(Location location){...}

public void Save(){...}

}



Rules
❌ Single Responsability

❌ Open Close

❌ Interface Segregation

Code
Behaviours attractor

public void SaveToFile(){...}

public void toJson(){...}

public class Car {

public int CurrentMileage(){...}

public void TravelTo(Location location){...}

public void Save(){...}

}



What am I doing at work?



In which world does my code belong to?
Every world has own rules

What am I doing?

Procedural code

Functional React Components

Hooks

Stores implements Funtor and Foldable

Event implements Profuntor and Functor

Combine stores and events

Lenses

Handling effects



Functional React Component
React Suspense is to a Monad as Hooks are to Applicative Notation

https: //www.freecodecamp.org/news/when-to-use-react-suspense-vs-react-hooks-f66ef94cb54f/

https://www.freecodecamp.org/news/when-to-use-react-suspense-vs-react-hooks-f66ef94cb54f/


Lesson learned
Language is not the paradigm

Respect rules

Compose

Write declarative code



Object Oriented Code
function TicTacToe() {

let player = Player.X;

const board = Board();

const getNextPlayer = () => {

if (player === Player.O) {

return Player.X;

}

return Player.O;

};

const play = (square) => {

if (board.hasBeenPlayed(square)) {

return;

}

board.play(square, player);

player = getNextPlayer();

};

...

...

const getPlayer = () => {

return player;

};

const getState = () => {

const winner = board.getWinner();

if (winner === Player.None) {

return State.InProgess;

}

if (Player.X === winner) {

return State.PlayerXWins;

}

return State.PlayerOWins;

};

return { getPlayer, play, getState };

}



Functional Programming Code
class IO {

constructor(fn) {

this.unsafePerformIO = fn;

}

[util.inspect.custom]() {

return 'IO(?)';

}

// ----- Pointed IO

static of(x) {

return new IO(() => x);

}

// ----- Functor IO

map(fn) {

return new IO(compose(fn, this.unsafePerformIO));

}

...

...

// ----- Applicative IO

ap(f) {

return this.chain(fn => f.map(fn));

}

// ----- Monad IO

chain(fn) {

return this.map(fn).join();

}

join() {

return new IO(

() => this.unsafePerformIO().unsafePerformIO()

);

}

}



“Bad programmers worry about the code. Good programmers worry about data structures and their
relationships.”

― Linus Torvalds



Across Boundaries



OOP Rules



FP Rules









Questions?



Thank you

David Nussio, Software Engineer - EOC

 davidnussio

 @davidnussio

https://github.com/davidnussio
https://github.com/davidnussio

