
REFACTORING

Definition:
Restructure (code) so as to 
improve operation, without
altering functionality

Simon Austnes



Summary of learnings

• Why

• When

• How

Refactor?



3

«If it ain’t broke, don’t fix it»

• Is it worth your time?

• proverb of the lazy
• But… I am lazy?



4

So, why should we bother?

Stinky code
• Change preventers

• Bloaters

• Object-orientation abusers

• Couplers

• Dispensables

Source: page 16 of Lesson 2 – Code smells



5

So, why should we bother?

Causing
• Rigidity

• Fragility

• Immobility

• Viscosity

• of design

• of environment
Source: http://www.hamiltonclaimssolutions.co.uk/blog/if-it-isnt-broken-dont-fix-it



6

So, why should we bother?

• Pareto principle

• Afraid of making changes?
• Write tests!

Source: page 4 of Lesson 1 – Introduction to refactoring



7

When is it needed?

• Rule of 3

• Breaking rules of object calisthenics

• Follow the wise words of Marco and Alessandro
• Refactor aggresively and constantly



8

Guidelines!

•Single responsibility principle

•Open-closed principle

• Liskov substitution principle

• Interface segregation principle

•Dependency inversion principle

«Refactor not because you know the right abstraction, but because you want to find it.» 
- Martin Fowler

• Minimize coupling

• Maximize Cohesion



9

Guidelines!

• Refactor readability before design
• 80/20

• Parallell change
• Expand, migrate and contract

• IDE agility
• Use the tools at your disposal

«Refactor not because you know the right abstraction, but because you want to find it.» 
- Martin Fowler



10

Rule #1 of refactoring

• Perserve behavior
• If you find a bug, consider it a feature



Thanks for your attention!

simon.austnes@bouvet.no


