
TDD - RUNNING

Strengthening the foundation

Kristoffer Steen



2

Intro

• The importance of a strong foundation

• SOLID principles revisited

• Refactoring

• Coupling and cohesion



3

The importance of a strong foundation



4

I found some cracks in my foundation

• Lack of vocabulary. 
• Lack of code smell knowledge. 
• Lack of pattern knowledge

• ..or for some: The skill needed to apply them
• Lack of SOLID principle knowledge

• ..or for some: The skill needed to apply them



5

Why are there cracks?

• It’s much more tempting and fun to learn new technologies and 
languages instead of reinforcing the foundation

• The stakeholders/customers want a house, they often don’t care much 
about the foundation. Especially when pressured.

• Because we are afraid to challenge other people, the tech lead or «the 
man» or whoever.

• Because we are afraid to take the road less travelled.



6

SOLID revisited 

• Single Responsibility Principle
• Modules / methods should have only reason to change

• Smells: Large class, Long method, long parameter list, switch statements

• Open / Closed Principle
• About modularity. Add functionality without changing existing code.

• Goes against YAGNI

• Liskov Substitution Principle
• Parent classes should be replaceable with subclasses without breaking code

• Favour «has a»-relationships over «is-a»



7

SOLID revisited cont. 

• Interface Segregation Principle
• Keep interfaces small, so many interfaces instead of few big ones. 

• Sort of like SRP for interfaces

• Dependency Inversion Principle
• Both high level and low level modules should depend on abstractions

• Abstractions should not depend upon details, details should depend on 
abstractions (contracts)



8

Refactoring 

• Stay in the green
• Don’t fix bugs in the exposed behaviour, clients might be relying on it



9

Refactoring quick guide

• First, increase readability (counts for 80% of the improvement)
• Do this layer by layer

• Then, refactor the design (counts for 20% of the improvement)

• To help stay in the green, use Parallel Change
• Expand: «Add new code instead of changing existing code». 

• Migrate: «Allow clients to migrate to new code / client code point to new code»

• Contract: «Remove deprecated code/tests»



10

Coupling and Cohesion

• Coupling
• How much interdependence between 

modules
• Should be kept as low as possible
• If high, making changes is hard

• Cohesion
• How related the responsibilities within 

a class is
• Should be kept as high as possible
• If low, the class should probably be 

splitted

https://www.nzgeo.com/stories/squeezed-not-shaken/

https://www.nzgeo.com/stories/squeezed-not-shaken/


11

What this course tought me and how to 
take this further
• Improved skills and vocabulary
• Easier to avoid/spot code smells, and easier to communicate them to others

• Easier to spot and implement patterns and principles, and easier to communicate 
them to others

• I need to focus more on strengthening my foundation (fixing cracks)

• I should be honest about my cracks, we all have them

• I will keep doing kata’s, and i will be asking other convertees to join me
• We have to organize some mob programming in our team/unit/company!



12

«The only easy day was yesterday» 
US Navy Seals



13

Questions?



14

Thanks!

kristoffer.steen@bouvet.no

mailto:kristoffer.steen@bouvet.no

