
Open/Closed Principle



Definition

“Software entities (classes, modules, functions, etc.) should be 
open for extension, but closed for modification“

Source: Meyer, Bertrand: Object-Oriented Software Construction



Why I chose Open/Closed Principle

• Definition sounds deceptively simple, but what does it imply?

• It was the most violated principle in our code smell exercise

• Jon Skeet finds it hard to understand

Source: https://codeblog.jonskeet.uk/2013/03/15/the-open-closed-principle-in-review/

https://codeblog.jonskeet.uk/2013/03/15/the-open-closed-principle-in-review/


Alternative definition

• It should be possible to change the behavior of a method without 
editing its source code

Source: https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle

https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle


Why Should Code Be Closed to Modification?

• Less likely to introduce bugs in code we don’t touch or deploy

• Less likely to break dependent code when we don’t have to deploy 
updates

• Fewer conditionals in code that is open to extension results in simpler 
code

• Bug fixes are ok

• Modifications during development are ok

Source: https://www.pluralsight.com/courses/csharp-solid-principles

https://www.pluralsight.com/courses/csharp-solid-principles


What does “Open for extension” mean?

• New functionality can be added as modules

• Pluggable code

• Similar in a way to extensions in Chrome, Visual Studio



Fixing OCP Violations

• Parameters

• Inheritance

• Composition / injection



Parameters

Source: https://www.pluralsight.com/courses/csharp-solid-principles

https://www.pluralsight.com/courses/csharp-solid-principles


Inheritance

Source: https://www.pluralsight.com/courses/csharp-solid-principles

https://www.pluralsight.com/courses/csharp-solid-principles


Composition / Injection

Source: https://www.pluralsight.com/courses/csharp-solid-principles

https://www.pluralsight.com/courses/csharp-solid-principles


Source: https://blog.ndepend.com/solid-design-the-open-close-principle-ocp/

https://blog.ndepend.com/solid-design-the-open-close-principle-ocp/


Source: https://blog.ndepend.com/solid-design-the-open-close-principle-ocp/

Strategy pattern

https://blog.ndepend.com/solid-design-the-open-close-principle-ocp/


Strategy – Example II

Source: Agile Technical Practices Distilled (Santos, Consolaro, Di Gioia)



Making it OCP compliant

Source: Agile Technical Practices Distilled (Santos, Consolaro, Di Gioia)



Why Use a New Class?

• Design class to suit problem at hand

• Nothing in current system depends on it

• Can add behavior without touching existing code

• Can follow Single Responsibility Principle

• Can be unit-tested

Source: https://www.pluralsight.com/courses/csharp-solid-principles

https://www.pluralsight.com/courses/csharp-solid-principles


OCP vs YAGNI

• YAGNI prohibits changing the existing functionality to account for 
possible new features in the future

• OCP is about accounting for possible new features in the future

• Risk of over-engineering a wrong abstraction

• But failure to identify variation over a common pattern may lead to 
lots of breaking changes and code smells like Shotgun Surgery and 
Divergent change

• We have to balance these two forces

Sources: https://enterprisecraftsmanship.com/posts/ocp-vs-yagni/, 
Agile Technical Practices Distilled (Santos, Consolaro, Di Gioia)

https://enterprisecraftsmanship.com/posts/ocp-vs-yagni/


OCP vs YAGNI - Rule of Three

• Start concrete

• Modify the code the first time or two

• By the third modification, consider making the code open to 
extension for that axis of change

Source: https://www.pluralsight.com/courses/csharp-solid-principles

https://www.pluralsight.com/courses/csharp-solid-principles


Protected Variation Pattern

“Identify points of predicted variation and create a stable interface 
around them”

Source: https://martinfowler.com/ieeeSoftware/protectedVariation.pdf

https://martinfowler.com/ieeeSoftware/protectedVariation.pdf


Review - Why use Open/Closed Principle

• Reduces risk when introducing new functionality

• Simplifies introducing new functionality

• Future developments of new functionality becomes much faster than 
before

• Beware of YAGNI and Rule of Three


