Open/Closed Principle



Definition

“Software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification”

Source: Meyer, Bertrand: Object-Oriented Software Construction



Why | chose Open/Closed Principle

* Definition sounds deceptively simple, but what does it imply?
* |t was the most violated principle in our code smell exercise
* Jon Skeet finds it hard to understand

Source: https://codeblog.jonskeet.uk/2013/03/15/the-open-closed-principle-in-review/



https://codeblog.jonskeet.uk/2013/03/15/the-open-closed-principle-in-review/

Alternative definition

* It should be possible to change the behavior of a method without
editing its source code

Source: https://en.wikipedia.org/wiki/Open%E2%80%93closed principle



https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle

Why Should Code Be Closed to Modification?

* Less likely to introduce bugs in code we don’t touch or deploy

* Less likely to break dependent code when we don’t have to deploy
updates

* Fewer conditionals in code that is open to extension results in simpler
code

* Bug fixes are ok
* Modifications during development are ok

Source: https://www.pluralsight.com/courses/csharp-solid-principles



https://www.pluralsight.com/courses/csharp-solid-principles

What does “Open for extension” mean?

* New functionality can be added as modules
* Pluggable code
e Similar in a way to extensions in Chrome, Visual Studio



Fixing OCP Violations

* Parameters
* Inheritance
* Composition / injection



Parameters

Console.Writeline("Hello world.™); Console.Writeline(message);

Source: https://www.pluralsight.com/courses/csharp-solid-principles



https://www.pluralsight.com/courses/csharp-solid-principles

Inheritance

DoOneThing DoAnotherThing

Execute() Execute

Console. Writeline{"Hello world.™); Console Writeline({"Goodbye world!*);

Source: https://www.pluralsight.com/courses/csharp-solid-principles



https://www.pluralsight.com/courses/csharp-solid-principles

Composition / Injection

Console.Writeline("Hello world.™);

Source: https://www.pluralsight.com/courses/csharp-solid-principles



https://www.pluralsight.com/courses/csharp-solid-principles

Circle

Square

DrawShapes(IEnumerable<
shape in shapes)
it (shape Circle)
DrawCircle(shape as Circle);

if (shape is Square)

DrawSquare(shape as Square);

DrawCircle(Circle circle

DrawSquare(Square square

» shapes)

Source: https://blog.ndepend.com/solid-design-the-open-close-principle-ocp/



https://blog.ndepend.com/solid-design-the-open-close-principle-ocp/

Strategy pattern

Circle : IShape
Draw(
Drawer
DrawShapes(IEnumerable< > chapes)
oreach { chape in shapes) Square : IShape

if (shape Circle) Draw(

{

DrawCircle(shape as Circle);

lse if (shape Square)

Drawer
DrawSquare(shape as Square);

DrawShapes(IEnumerable<IShape> shapes)

foreach (IShape shape in shapes)

{

DrawCircle{Circle circle shape.Draw();

}

DrawSquare(5Square sguare

Source: https://blog.ndepend.com/solid-design-the-open-close-principle-oc


https://blog.ndepend.com/solid-design-the-open-close-principle-ocp/

Strategy — Example |l

CarEngineStat
View DisplayEngineStatusReport(){
webView = CarEnginekebview
tController{ webView.FillWith{carEngineViewModel);

W 1 webView;

webView = CarEngine j

webView.FillWith{carEngineViewModel);

return webView; View PrintEngineStatusReport|
printView = CarEngi uaFrer' (

printView.FillWith(carEngineViewModel};

View PrintEngineStatusReport| return printView;
printView = CarEngi naFrlrfu_~~{

printView.FillWith{carEngineViewModel};

return printView; iew AlternativeDisplayEngineStatusReport(

uebU1eu = EnhancedAc Eng
webView. F111H1+h|CdrEnglneblewMudel.,
return printView;

Source: Agile Technical Practices Distilled (Santos, Consolaro, Di Gioia)



Making it OCP compliant

o t 'Ir

ewModel ) ;

Controller{

CarEngineStatusReport(IDisplayEngineStatusReport carEngineView){
_carEngineView = carEngineView;

View EngineStatusReport(){
_carEngineView.FillWith{carEngineViewModel);

return _carEngineView;

View : IDisplayEngineStatusR
Fillwith(CarEngineViewModel viewModel) {

! / IDisplayEngines
Fillwith(CarEng ewModel viewModel) {

Source: Agile Technical Practices Distilled (Santos, Consolaro, Di Gioia)



Why Use a New Class?

* Design class to suit problem at hand

* Nothing in current system depends on it

* Can add behavior without touching existing code
e Can follow Single Responsibility Principle

* Can be unit-tested

Source: https://www.pluralsight.com/courses/csharp-solid-principles



https://www.pluralsight.com/courses/csharp-solid-principles

OCP vs YAGNI

* YAGNI prohibits changing the existing functionality to account for
possible new features in the future

* OCP is about accounting for possible new features in the future

* Risk of over-engineering a wrong abstraction

e But failure to identify variation over a common pattern may lead to
lots of breaking changes and code smells like Shotgun Surgery and
Divergent change

e We have to balance these two forces

Sources: https://enterprisecraftsmanship.com/posts/ocp-vs-yagni/,
Agile Technical Practices Distilled (Santos, Consolaro, Di Gioia)



https://enterprisecraftsmanship.com/posts/ocp-vs-yagni/

OCP vs YAGNI - Rule of Three

* Start concrete
* Modify the code the first time or two

* By the third modification, consider making the code open to
extension for that axis of change

Source: https://www.pluralsight.com/courses/csharp-solid-principles



https://www.pluralsight.com/courses/csharp-solid-principles

Protected Variation Pattern

“Ildentify points of predicted variation and create a stable interface
around them”

Source: https://martinfowler.com/ieeeSoftware/protectedVariation.pdf



https://martinfowler.com/ieeeSoftware/protectedVariation.pdf

Review - Why use Open/Closed Principle

* Reduces risk when introducing new functionality
e Simplifies introducing new functionality

* Future developments of new functionality becomes much faster than
before

e Beware of YAGNI and Rule of Three



