
Test doubles in 
modern software 
development

Mocks, Spys, Fakes and Stubs. 
What they are and how to use them.

By Stuart Hopwood



Test Doubles

A Test Double is a generic term 
for any case where you replace a 
production object for testing 
purposes.

- Martin Fowler



Test Doubles

Test Doubles can be created with a test framework such as

Moq or NSubstitute, or handwritten.

Most of the time a test framework is quicker and easier to use.

However there are times when a handwritten test double is a better fit.



Test Double 
Vocabulary

What should I call these things?



Test Double Vocabulary

Test Doubles can come with a few names, each with their own

intended use case.

They are...



DUMMY
Used to fill out a method’s parameters. 

Not commonly used.



STUB
Returns a call to the method with a pre-programmed output.

Require setting up with every test.



FAKE
Same as a Stub but handwritten.



MOCK
Set up with expectations of the calls they are to receive.

Used to verify that a method call has been triggered correctly or at all.



SPY
A handwritten Mock.

Does not drink Martini.



Command / Query 
Separation

The two categories of methods



Command / Query Separation

There are essentially only two categories of methods...

Command methods

And Query methods.



Command / Query Separation

A good practice is to divide an object's methods into those two

separated categories.

This practice was named: Command Query separation by Bertrand

Meyer in his book "Object Oriented Software Construction".

https://www.amazon.com/Object-Oriented-Software-Construction-Book-CD-ROM/dp/0136291554


COMMAND
Modifies the state.

Does not return the state.



QUERY
Does not modify the state.

Fetches and returns the state.



What Test Double 
Should I Use?

When should you use a Stub or 

Fake?



Use Stubs for Queries

A query is a method that fetches and returns state data. It 

should not modify that data.

Stubs respond to the method call with a predetermined value.



Use Mocks for Commands

A command is a method that modifies the state of application.

Mocks verify that the method call was triggered and even 

how many times it was called.



Should I test 
Interfaces?

Yes! Always



Testing Interfaces

Tests should verify public behaviour.

We test the interface to test the behaviour, not a specific 

concrete implementation.

Should the implementation change, our tests don’t need to 

change.



Some Guidelines



Test Double Guidelines

Don’t add behaviour inside Test Doubles

Don’t use Test Doubles for isolated objects

Don’t create too many Test Doubles



Any Questions?



Thank you for listening!



Sources

Alcor Acadamy

Martin Fowler https://martinfowler.com/bliki/TestDouble.html

Command Query separation by Bertrand Meyer

https://www.amazon.com/Object-Oriented-Software-Construction-Book-CD-ROM/dp/0136291554

Pragmatists Blog

https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da

https://martinfowler.com/bliki/TestDouble.html
https://www.amazon.com/Object-Oriented-Software-Construction-Book-CD-ROM/dp/0136291554
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da


The end.


