
REVIEW

1 0 . 1 1 . 2 0 2 1

A FLY THROUGH THE COURSE

WALKING

2

Red – Green – Refactor
• With baby steps
• Test behaviour and not

implementation details
• Use triangulation
• One dimension of freedom after the

other

Baby Steps

Testing behaviour

Triangulation without changing dimensions of freedom too early
• first only proceeded in buy Shares (first just one line, then 2)
• then only in sell Shares
• Combined input at last

WALKING – OBJECT CALISTHENICS

3

Object Calisthenics
• Only one level of indentation
• Wrap primitives and Strings
• Only One dot per line

• No more than 2 instance variables
per class

• No public getters/setters/properties

RUNNING – CODE SMELLS

4

• Feature Envy: method in class Game
uses methods of class Board exessively

• Long method

• Inappropriate Intimicy: method uses
internal Field « Symbol » of class Board

• Duplicated Code

• Comments (even wrong ones!)

• Primitive Obsession

Start refactoring based on the 80-20 rule!

…

We made it much
more beautiful!

FLYING - CONNASCENCE

5

Dynamic

• Execution order

Static

• Position

• Name

• Type

• Would accur when we would not wrap

the transaction type in an enum

FLYING – TEST DOUBLES

6

Commands

• Mocks or Spies

Queries

• Stubs or Fakes

Framework or handmade?

DIRECTION OF DEPENDENCY

7

Begin from external Point of View
• Start from Acceptance Test

• Acceptance Test helps for triangulation and finding the next “baby step”
• When we finished 1 degree of freedom the acceptance test pointed us to the next

• No Dependencies from the inside to the outer world:
• Use Interfaces -> Implementation of outer Systems can easily be changed
• Test Doubles help testing and implementing the domain and application layer services

[Agile Technical Practices Distilled. Pedro M. Santos, Marco Consolaro, Alessandro Di Gioia]

LEARNINGS AND QUESTIONS

8

Design upfront helps, but can also block when not correct (like I was implementing the Bowling Kata)
• Mob helps when blocked

Refactor constantly and aggressively
• There will always be improvements
• But don’t change things that don’t need to be changed

• Refactor when you have to add new features
• Create technical dept tasks for things you find, but are not urgent?

What did we learn from Mob Programming?
• Helps to learn from each other
• Helps to get to know each other better
• Team-building
• Builds up trust in each other

• Better communication for constructive criticism and improvement ideas
• What do you think?

Any other questions or additions?

MERCI

L i n k e d I n : D o m i n i q u e L a t z a d o m i n i q u e _ l a t z a @ l i v e . d e

Looking forward to next course!
And

Have a great weekend!

http://www.linkedin.com/in/dominique-latza-5173691b7

