
Test Driven 
Development 
& Code Smells

Created by

Jan Inge Nygård

(Bouvet)



Introduction

• General workflow for creating tests

• Why and how to refactor

• Code smells & examples



Workflow for creating tests

• Write test validation code (assert) that checks expected vs computed value

• Create calling code (act) that fetches the computed value

• Initialize necessary input parameters (arrange)

• Write test validation code (assert) that checks expected vs computed value

• Create calling code (act) that fetches the computed value• Create calling code (act) that fetches the computed value

• Write test validation code (assert) that checks expected vs computed value• Write test validation code (assert) that checks expected vs computed value



Why refactor?
• We read more code than we write (90-10)

• Hence, reading is the bottleneck

• Understand code better -> improve readability

• Use 20 % effort to improve readability by 
80 % (Pareto principle)

• Refactor if it makes sense business wise

• Don’t refactor code that is rarely used

• Refactor readability before design



How to refactor?
• Classes, methods, variables, etc can be renamed, extracted, inlined and 

moved

• This improves readability, sets the right level of complexity / abstractions, 
and keeps code where it is relevant to it’s job / responsibility

• Do parallel change (expand, migrate, contract) -> keep old implementation 
and test new one -> then switch internal usage



Dont refactor while your tests are red



Code Smells
• Be understanding of creators of code smells -> blame the workflow instead

• Code smells indicate a bigger issue underneath

• First -> Readability, complexity, responsibility and duplication

• Next -> Introduce new abstractions (ie. new types) if needed



Avoid rigid code
• Code should be open-closed, ie. flexible / 

modular / plug&play-able

• New functionality should not require changes to 
old code

• Dont cut corners -> increases viscosity of design 
-> higher technical debt -> harder to maintain

• Lower viscosity of environment -> Avoid manual 
steps with releases -> slows you down -> might 
forget them



Example Bloaters
• Too many input parameters -> create a data class instead



Example Data Clumps
• Data that fit together should stay together
• Could add behaviour to data class -> ie. accept first and last names -> 

create StudentName value



Example Primitive Obsession
• Avoid describing complex concepts with basic types

• Solution -> create a new type to represent that complex object



Example Long Method
• Too many lines -> hard to read

• Doing too much

• Should only do one thing

• Solution -> split up & extract



Example Divergent Class
• God class -> “One class to rule them all”

• Violates the 1st responsibility principle

• New change -> have to update multiple code blocks within the god class

• Solution -> Extract & decouple until class only does one thing



Example Shotgun Surgery
• Opposite of divergent change -> too many extractions

• Issue -> One feature (responsibility) is too decoupled

• New change -> have to update all classes

• Solution -> recombine & remove abstractions



Conclusions
• Refactor old code mainly to fix readability

• Design new code to avoid need for future refactoring

• Hence, refactoring fixes the past, design improvements fixes the future

• Solution to bloaters, data clumps and primitive obsession seem related, ie. 
new type / data class + some behaviour inside

• Divergent change and shotgun surgery are opposite extremes that we want 
to avoid



Sources
• https://makolyte.com/wp-content/uploads/2020/05/primitive-obsession-before-

and-after.png

• https://lilitao.github.io/assets/images/code-smell-data-clumps.png

• https://i0.wp.com/thecodebuzz.com/wp-content/uploads/2019/03/Premitive-
Obsession-resolution-2.png?fit=785%2C184&ssl=1

• https://makolyte.com/wp-content/uploads/2020/04/image-10.png

• https://image.slidesharecdn.com/presentation1-170116182047/95/code-smells-
and-its-type-with-example-20-638.jpg?cb=1484590941

• https://ducmanhphan.github.io/img/refactoring/change-preventers/solutions-
divergent-change.png

• https://giphy.com/

https://makolyte.com/wp-content/uploads/2020/05/primitive-obsession-before-and-after.png
https://lilitao.github.io/assets/images/code-smell-data-clumps.png
https://i0.wp.com/thecodebuzz.com/wp-content/uploads/2019/03/Premitive-Obsession-resolution-2.png?fit=785,184&ssl=1
https://makolyte.com/wp-content/uploads/2020/04/image-10.png
https://image.slidesharecdn.com/presentation1-170116182047/95/code-smells-and-its-type-with-example-20-638.jpg?cb=1484590941
https://ducmanhphan.github.io/img/refactoring/change-preventers/solutions-divergent-change.png
https://giphy.com/


Any questions?



Thanks for me!

You can reach me at

• Phone: +47 41221040

• Email: jan.nygard@bouvet.no


