est Driven
Development

& Code Smells

Created by
Jan Inge Nygard

(Bouvet)



Introduction

* General workflow for creating tests

 Why and how to refactor

* Code smells & examples



Workflow for creating tests

* Write test validation code (assert) that checks expected vs computed value
* Create calling code (act) that fetches the computed value

e |[nitialize necessary input parameters (arrange)



Why refactor?

We read more code than we write (90-10)

* Hence, reading is the bottleneck

Understand code better -> improve readability

* Use 20 % effort to improve readability by
80 % (Pareto principle)

e Refactor if it makes sense business wise
 Don’t refactor code that is rarely used

» Refactor readability before design




How to refactor?

Classes, methods, variables, etc can be renamed, extracted, inlined and
moved

This improves readability, sets the right level of complexity / abstractions,
and keeps code where it is relevant to it’s job / responsibility

Do parallel change (expand, migrate, contract) -> keep old implementation
and test new one -> then switch internal usage



Dont refactor while your tests are red




Code Smells

Be understanding of creators of code smells -> blame the workflow instead
Code smells indicate a bigger issue underneath
First -> Readability, complexity, responsibility and duplication

Next -> Introduce new abstractions (ie. new types) if needed



Avoid rigid code

Code should be open-closed, ie. flexible /
modular / plug&play-able

New functionality should not require changes to
old code

Dont cut corners -> increases viscosity of design
-> higher technical debt -> harder to maintain

Lower viscosity of environment -> Avoid manual
steps with releases -> slows you down -> might
forget them




Example Bloaters

 Too many input parameters -> create a data class instead

Before After




Example Data Clumps

* Data that fit together should stay together

* Could add behaviour to data class -> ie. accept first and last names ->
create StudentName value

public class Student {
public class Student {

private String firstName;

private String lastName; .
private StudentName name;

private String country; >
private String city; private Address address;

private String street;
private String postCode; //getter, setter

//getter, setter }




Example Primitive Obsession

* Avoid describing complex concepts with basic types

e Solution -> create a new type to represent that complex object




Example Long Method

Updatequ:

Ttems[i].Name != Ttems[i].Name |-

riormalItem:

Ttems[i].Qualif
Items[i].Qualif
{Items[i].Name
if (Items[i].Selln <
{
if (Items[i].Quali

Items[i].Quality + 1;

Items[i].Quality +

Ttems[i].Name !=

Items[i].5ellin = Items[i].Sellin - 1;

Ttems[i].Sellin <

Items[i] . N
(Ttems[i]

Decremen

Items[i]. = Items[i].Quality - Items[i].Quali

(Ttems[i].

Ttems[i]. = Items[i].Quality +

Too many lines -> hard to read
Doing too much

Should only do one thing
Solution -> split up & extract



Example Divergent Class

* God class -> “One class to rule them all”
* Violates the 15 responsibility principle
* New change -> have to update multiple code blocks within the god class

e Solution -> Extract & decouple until class only does one thing

method(){ - E——

. -

Extract Method

(split a method into several
smaller methods)

(Split into several smaller classes)



Example Shotgun Surgery

* Opposite of divergent change -> too many extractions

e Issue -> One feature (responsibility) is too decoupled

* New change -> have to update all classes

* Solution -> recombine & remove abstractions {




Conclusions

Refactor old code mainly to fix readability
Design new code to avoid need for future refactoring
Hence, refactoring fixes the past, design improvements fixes the future

Solution to bloaters, data clumps and primitive obsession seem related, ie.
new type / data class + some behaviour inside

Divergent change and shotgun surgery are opposite extremes that we want
to avoid



Sources

https://makolyte.com/wp-content/uploads/2020/05/primitive-obsession-before-
and-after.png

https://lilitao.github.io/assets/images/code-smell-data-clumps.png

https://i0.wp.com/thecodebuzz.com/wp-content/uploads/2019/03/Premitive-
Obsession-resolution-2.png?fit=785%2C184&ssl|=1

https://makolyte.com/wp-content/uploads/2020/04/image-10.png

https://image.slidesharecdn.com/presentation1-170116182047/95/code-smells-
and-its-type-with-example-20-638.jpg?cb=1484590941

https://ducmanhphan.github.io/img/refactoring/change-preventers/solutions-
divergent-change.png

https://giphy.com/



https://makolyte.com/wp-content/uploads/2020/05/primitive-obsession-before-and-after.png
https://lilitao.github.io/assets/images/code-smell-data-clumps.png
https://i0.wp.com/thecodebuzz.com/wp-content/uploads/2019/03/Premitive-Obsession-resolution-2.png?fit=785,184&ssl=1
https://makolyte.com/wp-content/uploads/2020/04/image-10.png
https://image.slidesharecdn.com/presentation1-170116182047/95/code-smells-and-its-type-with-example-20-638.jpg?cb=1484590941
https://ducmanhphan.github.io/img/refactoring/change-preventers/solutions-divergent-change.png
https://giphy.com/

Any guestions?




I Thanks for me!

You can reach me at
* Phone: +47 41221040

e Email: jan.nygard@bouvet.no




