
Coupling and cohesion, and 
the Zone of Pain

Henning Torsteinsen



Cohesion

• Cohesion refers to what module can do, internally. It is also 
called Intra-Module binding as it measures the strength of relationship 
of functionalities inside a module/package/component. 

• Cohesion should always be high 
• A module/package/component is focused on what it should be doing, i.e. only 

methods relating to the intention of the class.



Cohesion

1. Functional Cohesion: The execution of the task related to the problem 
is the only concern from all the elements inside the module.

2. Sequential Cohesion: The output of an element is the input of other 
element in a module i.e., data flow between the parts.

3. Communicational Cohesion: Multiple elements in a module operate 
on same input data and produce same output data.

4. Procedural Cohesion: The activities in module are related by 
sequence, otherwise they are not related.

5. Coincidental Cohesion: The activities with meaningless relationship 
with one another are contributed by the elements in the module.



Coupling?

• Coupling: in software engineering is the inter-dependency or degree of 
relationship between multiple modules/packages/components. 

• Multiple modules/packages/components that are highly coupled are 
strongly dependent on each other.

• Multiple modules/packages/components that are loosely coupled are 
not or somehow dependent on each other.



Coupling!
1. Data Coupling: When modules shared primitive data between them.

2. Stamp Coupling: When modules shared composite or structural data between 
them and it must be a non-global data structure. for example, Passing object 
or structure variable in react components.

3. Control Coupling: When data from one module is used to direct the structure 
of instruction execution in another.

4. External Coupling: When two modules shared externally imposed data type 
that is external to the software like communication protocols, device 
interfaces.

5. Common Coupling: When two modules shared the same global data & 
dependent on them, like state management in JavaScript frameworks.

6. Content Coupling: When two modules shared code and can modify the data of 
another module, which is the worst coupling and should be avoided.



afferent coupling and efferent coupling. 

• Efferent coupling tells you the degree to which types in an assembly use types outside of it. 
• Afferent coupling tells you how many types outside of the assembly depend on types inside of it.

The ratio of efferent coupling to total coupling gives you the instability of the assembly. And low 
instability (or high stability) contributes to landing you in the zone of pain.

• Maximum stability occurs when an assembly couples entirely in afferent fashion. This makes 
intuitive sense when you think about it. Imagine an assembly dependent upon by every other 
assembly in your application, but dependent upon none. The weight of all of that inbound 
dependency would deter you heavily from changing it, creating a stable assembly. But that same, 
intense stability creates a situation where needing to change something can bring pain.

http://www.ndepend.com/docs/code-metrics#AfferentCoupling
http://www.ndepend.com/docs/code-metrics#EfferentCoupling


Abstractness

• Abstractness, in this instance, simply means the ratio of abstract 
(interface or declared with abstract keyword) to total types within the 
assembly. If your assembly contains many interfaces and abstract base 
classes, it will have a higher abstractness score. Likewise, if it contains 
none, the ratio will plummet to zero.

• Lack of abstractness pushes you toward the zone of pain. Abstractions 
provide seams that allow for testability and for changing the code by 
adding members, rather than heavy modification. 

• Without abstraction, modification becomes risky and difficult.



Zone of Pain



Summary?

• Reduce coupling to make it easier to change.

• Increase cohesion to specialize a class.

• Depend on abstractions to reduce “stability”.

• Stay away from the Zone of Pain ;-)



<End of presentation>

THANK YOU FOR YOUR TIME! LET’S KEEP IN TOUCH:
GITHUB.COM/HENNINGNT

WWW.LINKEDIN.COM/IN/HENNINGNT/


