
Solid Principles

Geir Ingi Sigurðsson

Alcor Academy – Running



SOLID is an acronym coined by Robert C. 

Martin (also known as Uncle Bob). It stands for:

S – Single responsibility Principle

O - Open-closed Principle

L - Liskov Substitution Principle

I - Interface Segregation Principle

D - Dependency Inversion Principle



"Everything should be made as simple as 

possible, but no simpler." Albert Einstein

 In object-oriented programming, the 
Single Responsibility Principle (SRP) 
states that every object should have a 
single responsibility, and that 
responsibility should be entirely 
encapsulated by the class. All its 
services should be narrowly aligned with 
that responsibility.

 A class should have one, and only one, 
reason to change.

 A great heuristic for the Single 
Responsibility Principle is that we can 
describe what a class does without 
using “and” or “or.”

Single responsibility principle



Open/Closed Principle

 Objects or entities should be open for extension 
but closed for modification.

 Software objects should be extendablewithout 
changing the object itself.

 One of the great advantages of a correct 
implementation of the Open/Closed Principle is 
that future developments of new functionality 
becomes much faster than before. This is usually 
achieved by identifying and modeling the 
common behavior into a higher layer of 
abstraction. For introducing new behavior, it will 
then be just a matter of implementing a new 
concrete component to be plugged in.

‘I’ll tell you what the problem is, mate,’ said 

Majikthise, ‘demarcation, that’s the 

problem!’ […] ‘That’s right’ shouted 

Vroomfondel, ‘we demand rigidly defined 

areas of doubt and uncertainty!’” Douglas 
Adams, The Hitchhiker’s Guide to the 

Galaxy



"If it looks like a duck and quacks like a duck, 
but needs batteries, you probably have the 

wrong abstraction" Spring Framework Guru

 Derived classes should keep promises 
made by base classes. This also applies 
to interfaces, and it means that classes 
that implement some interface should 
keep the promises made by that 
interface.

 Everything regarding the LSP is about 
the behavior of a class. So, the “is-a” 
relationship in OOP must be seen from 
the perspective of exposed behavior, 
not the internal structure.

Liskov Substitution Principle



Clients should not be forced to depend 

on methods they do not use.— Robert 

Martin

 The dependency should be on the 
interface, the whole interface, and 
nothing but the interface.

 The goal of the ISP is to reduce the side 
effects and the number of changes 
needed in a system by splitting the 
software into multiple, smaller and 
independent parts grouped by 
functionality.

Interface Segregation Principle



"Depend on abstractions, not on 

concretions". Robert C. Martin

 Decouple conventional dependency 
relationships established from high-level, 
policy-setting modules to low-level, 
dependency modules by inversion for 
the purpose of rendering high-level 
modules independent of the low-level 
module implementation details.

 This is achieved by having high- and 
low-level modules depend on an 
abstraction.

Dependency Inversion Principle



"He who asks is a fool for five minutes, but 

he who does not ask remains a fool 

forever" Mark Twain

 The answer to the Ultimate Question of 
Life, The Universe, and Everything?

 Little or big endian?

 Red or blue pill?

Questions?



Contact: geir.sigurdsson@bouvet.no

Thank you!


