
SOLID

PRINCIPLES
BY DAVID CASTLE

WHAT IS
SOLID?

2

Single Responsibility Principle

 SOLID is a mnemonic acronym for five design principles intended to
make software designs more understandable, flexible and
maintainable.

 The principles are a subset of many principles promoted by
American software engineer and instructor Robert C. Martin aka
Uncle Bob.

 Though they apply to any object-oriented design, the SOLID
principles can also form a core philosophy for methodologies such
as agile development or adaptive software development.

3

Single Responsibility Principle

‘A class or module
should have one and

only one reason to
change’.

4

Single Responsibility Principle

Why is it useful?

 Readability – As your applications grow in size and complexity, readability
becomes one of the top priorities. Code that is not readable, will lead to
several failure points. The Single Responsibility Principle, ensures that your code
is clean and readable at all times.

 Testability – Breaking down your code into small modules, that do only one
thing, makes them easy to test.

 Reusability – Your code is now tested, and clean which means that they can
be reused in several parts of your code.

 Maintainability – Code written with this principle in mind is easy to maintain on
a long run.

5

Single Responsibility Principle
6

Single Responsibility Principle

Single responsibility means that your class (or any

entity for that matter, including a method in a class,

or a function in structured programming) should

only do one thing. If your class is responsible for

getting users’ data from the database, it shouldn’t

care about displaying the data as well. Those are

different responsibilities and should be handled

separately.

7

Single Responsibility Principle

How do we
solve this?

8

Single Responsibility Principle

The Single Responsibility Principle is one of the simplest of

the principles, but one of the hardest to get right. Con-

joining responsibilities is something that we do naturally.

Finding and separating those responsibilities from one

another is much of what software design is really about.

Indeed, the rest of the principles we will discuss come

back to this issue in one way or another.

9

Open/Closed Principle

‘Software entities should
be open for extension

but closed for
modification.’

10

Open/Closed Principle

The Open/Closed Principle states that a module

should be open for extension but closed for

modification. That means you should be able to

extend a module with new features not by

changing its source code, but by adding new

code instead. The goal is to keep working, tested

code intact, so over time, it becomes bug

resistant.

11

Open/Closed Principle
12

Open/Closed Principle

How do we solve
this?

13

Open/Closed Principle

There is much more that could be said about the
open-closed principle. Conformance to this
principle is what yields the greatest benefits
claimed for object oriented technology; i.e.
reusability and maintainability. It requires a
dedication on the part of the designer to apply
abstraction to those parts of the program that the
designer feels are going to be subject to change.

14

Liskov Substitution Principle
15

Liskov Substitution Principle

Or, in software developing terms, you

should be able to substitute a class with

any of its subclasses, without breaking

the system. Putting it more simply,

implementations of the same interface

should never give a different result.

16

Liskov Substitution Principle

How do we
solve this?

17

Liskov Substitution Principle

The Open-Closed principle is at the heart of many of
the claims made for OOD. It is when this principle is in
effect that applications are more maintainable,
reusable and robust. The Liskov Substitution is an
important feature of all programs that conform to the
Open-Closed principle. It is only when derived types
are completely substitutable for their base types that
functions which use those base types can be reused
with impunity, and the derived types can be
changed with impunity.

18

Interface Segregation Principle

‘Clients should not be
forced to depend
upon interfaces that
they don't use’.

19

Interface Segregation Principle
20

Interface Segregation Principle

The Interface Segregation Principle states that clients

should not be forced to depend on methods that

they do not use. Interfaces should belong to clients,

not to libraries or hierarchies. Application developers

should favour thin, focused interfaces to “fat”

interfaces that offer more functionality than a

particular class or method needs.

21

Interface Segregation Principle

How do we
solve this?

22

Interface Segregation Principle

Interfaces that are not specific to a single client such
as fat interfaces, lead to inadvertent couplings
between clients that ought otherwise to be isolated.
By making use of the ADAPTER pattern, either through
delegation (object form) or multiple inheritance (class
form), fat interfaces can be segregated into abstract
base classes that break the unwanted coupling
between clients.

23

Dependency Inversion Principle

‘High-level modules should not depend on
low-level modules. Both should depend on
abstractions.’

‘Abstractions should not depend upon
details. Details should depend upon
abstractions.’

24

Dependency Inversion Principle

Let's use an example to explain this. Looking into your house, you’re
using electricity to plug in your laptop, your phone, lamp, etc. They all
have a unified interface to get electricity: the socket. The beauty of it
is that you don’t need to care about the way the electricity is
provided. You simply rely on the fact that you can use it when
needed.

Now, imagine if instead of depending on the socket as an interface,
you had to wire things up every time you needed to charge your
phone. In software terms, that’s what we do whenever we depend on
concrete implementations: we know too much about how things are
implemented which makes it easy to break the system.

25

Dependency Inversion Principle
26

Dependency Inversion Principle
27

Conclusions

• You don't want your modules to be tightly coupled together or it
defeats the purpose of having them.

• You do want your modules to be highly cohesive, so they are all
working efficiently towards the same goal.

• You do want to keep your modules as encapsulated as possible, so
no one else knows (or needs to know) about their implementation
details.

• The SOLID design principles essentially represent tests as to whether
you are properly implementing those three characteristics.

28

