
Legacy Code

My Perspective

Markus Doggweiler, CSS Insurance, October 2021



What’s the plan?

• We had an interesting course

• Very hands-on, very practical

• Focused on the act of “renovating”

• Time to take a step back…

• … and put all of this into context again.



Legacy Code – What are we talking about?

• In computing, a legacy system is an old method, technology, 
computer system, or application program, “…” yet still in use. 
(Wikipedia)

• Code without tests. (Michael Feathers)

• Code is legacy code as soon as it's written. (Unknown 
source)

• And there’s probably a lot more…



Legacy code is code that 
nobody wants to touch.



Why not?

• Code written by people that aren’t here anymore

• What does it do?

• How can it be run?

• Where’s the documentation?

• No tests

• Hard to read and understand
• “Spaghetti code”
• No clear patterns
• No clear architecture
• Bad names
• Too many dependencies



Ok, so what do we need to do?



Documentation

Automated tests

Clean Code

But how?



Can “good and clean” code become legacy just by aging?



Yes!

Why?

• Relies on a platform that might not be supported any more

• Relies on other dependencies that might not be supported any more

• Other external changes

How do we avoid that?

• Checkout, build regularly

• Use something like dependabot that forces you to do so



Anyway, there will always be legacy code…

So we need to be able to deal with it.



The question is how?

• In the best case, do not touch it. Just don’t. ;)

• Only touch it, if it is really required. I.e. there is a business need, or 
it’s broken or something.

• Bug

• New feature

• Do not touch it e.g. for Sonar lint issues like cyclometric complexity



If you do need to touch legacy code…

• Only touch what is necessary

• Consider doing it in a mob

• Write tests before (using the techniques we learnt in the last weeks)

• Don’t break production (e.g. by breaking dependencies)

• If you know that the system will live longer and require further changes: Consider 
refactoring (once you have tests).

• What is in production is the correct behavior ("Lock down the behavior")



Personal example from my last employer

• We had a so called “expression engine”
DateTime.Now.AddDays(10).ToString()

• The parsing functionality had bug

• We knew it

• But we didn’t change it



Most important thing when touching legacy 
code…

… is to apply what we learnt:

• Write tests

• Don’t break production

• Break dependencies

• Change only what is necessary



Your code is like your garden…

• When it’s in a good state, life is easier

• Bringing it to a good state can take some (initial) effort

• Best to do it from the start

• Still needs some regular care

Happy gardening!



Thanks for your attention.

• Questions?

• Discussion?

Or contact me later at markus.doggweiler@gmail.com


