Elegant Assertions
Assert]

Jurg Weilenmann, 15.10.2021

The challenge

* write a test checking some fields of items in list
* default assert lib is java assertions or Hamcrest

@Test
public void test2() {
List<Watch> watches = getWatches() ;

assertThat (watches, hasSize(3)):;

Watch omega = new Watch ("Omega", "Seamaster", 1000);

Watch swatch = new Watch("Swatch", "Pink Lady", 99);

Watch 1wc = new Watch ("IWC", "Aquatimer", 5000);

assertThat (watches, containsInAnyOrder (omega, swatch, iwc));

* Failed, because Watch.equals() was not implemented
* |t's easy, just implement the equals(), isn't it?

* BUT:
* pull request was rejected by colleagues because equals is not used in production code

* equals might be already implemented, but does not what you need to compare the fields (e.g. it's an entity)
* you don’t want to compare all fields, but only some of them

Options

* manually looping through the list an assert each field individually

Watch watchO0 = watches.get (0);
assertThat (watchO.getBrand (), 1is(equalTo ("Omega")))
assertThat (watchO.getModel (), 1is(equalTo("Seamaster")));
/] ...
Watch watchl = watches.get (1)
assertThat (watchl.getBrand (), 1is(equalTo("Swatch")));

)

assertThat (watchl.getModel (), is(equalTo("Pink Lady")));

°* moving asserts into a method
e extend hamcrest with your own matcher

or give break to Assertj

Test with Assert]

@Test
public void test () {
final List<Watch> watches = getWatches() ;
assertThat (watches) .asList ()
.hasSize (3)
.extracting ("brand", "model", "price")
.contains (
tuple ("Omega", "Seamaster", 10000),
tuple("Swatch", "Pink Lady", 99),
tuple("IWC", "Agquatimer", 5000)

Look at this beauty :-)

Dependency

<dependency>
<groupld>org.assertj</groupld>
<artifactId>assertj-core</artifactId>
<version>3.21.0</version>
<scope>test</scope>

</dependency>

* many options to compare

What | like on Assert]

* it has a fluent api

assertThat (frodo.getName ())
.startsWith ("Fro")
.endsWith ("do")
.1sEqualToIgnoringCase ("frodo") ;

assertThat (fellowshipOfTheRing)
.hasSize (9)
.contains (frodo, sam)
.doesNotContailn (sauron) ;

-> great IDE support. Never have to remember the matchers name

* extracting fields (all or just the relevant ones)

assertThat (watch)
.extracting (Watch: :getBrand, Watch::getModel, Watch::getPrice)
.1sEqualTo (Arrays.asList ("Omega", ,Seamaster™, 10000));

* field by field comparison

assertThat (watch)
.returns ("Omega", from(Watch::getBrand))
.returns("Seamaster", from(Watch::getModel));

What | like on Assert]

* compare by reflection and exclude fields

Watch watchl = new Watch ("Omega", "Speedmaster", 1000);
Watch watch?2 = new Watch ("Omega", "Speedmaster", 1000);
Watch watch3 new Watch ("Omega", "Speedmaster", 200);

assertThat (watchl)
.usingRecursiveComparison ()
.1sEqualTo (watch?2)
.1sNotEqualTo (watch3)
.lgnoringFields ("price")
.1sEqualTo (watch3);

you can ignore fields by name, type, regs and more

* builder for more complex, reusable comparators.

RecursiveComparisonConfiguration configuration = RecursiveComparisonConfiguration.buillder ()
.withIgnoredFields ("hasPhd")
build () ;

assertThat (doctors)
.usingRecursiveFieldByFieldElementComparator (configuration)
.contains (sheldon) ;

What | like on Assert]

* stream like api with filters for lists
assertThat (fellowshipOfTheR1ng)

.filteredOn(character -> character.getName () .contains ("o"))
.containsOnly (aragorn, frodo, legolas, boromir);

Many other ,contains’: doesNotContain, containsinAnyOrder, containsExactley, containsAll,

What | like on Assert]

* exceptions

// exception assertion, standard style
assertThatThrownBy (this::somethingIsGoingWrong)

.hasMessage ("boom!") ;
// ... or BDD style
Throwable thrown = catchThrowable(() -> this.somethinglIsGoingWrong())

assertThat (thrown) .hasMessageContaining (,,boom") ;

// or

assertThatExceptionOfType (RuntimekException.class)
.1sThrownBy (this::somethinglIsGoingWrong)
.havingCause ()
.withMessage ("boom!") ;

* and many more features

* conditions (predicate)

* BDD style (then() replaces assert())

* assumption (conditional test execution: run test only on given condition)
* dates, numbers, ranges

What | don't like on Assert

* extracting field values with lambdas not supported on all methods (some
methods support it now)

* to0 many features (?)

* you can make things easily complex ;-)

References

°* home of assert]: https://assertj.github.io/doc/
* most examples taken from https://assert].github.io/doc/ (modified for readabllity)

https://assertj.github.io/doc/
https://assertj.github.io/doc/

Contact:

Mail: juerg.weilenmann@css.ch

Twitter: -

Facebook: -

LinkediIn: -

Instagram: -

WhatsApp: -

Git: -

BeachBar: 18:00 - 20:00

Mercl for listening

mailto:juerg.weilenmann@css.ch

