
SIMPLICITY IN
DESIGN

Rob Norman

"Design adds value faster than it adds costs."

Joel Spolsky

Takeaways so far

◦ BDD / TDD

◦ Transformation Priority Premise

◦ Object Calisthenics

BDD / TDD

◦ Reg, Gren, Refactor

◦ Determine the degrees of freedom then test one at a time

◦ Triangulation, do the very simplest and straight forward thing to satisfy the current tests, until we have

enough tests in place to drive out a more generic implementation

◦ Rule of Three, try to see pattens in duplicated code when we have at least three repetitions

Transformation Priority Premise

◦ Useful to think about or refer back to whilst looking for ways to refactor.

TRANSFORMATION STARTING CODE FINAL CODE

1 {} => nil return nil

2 nil => constant return nil return “1”

3 constant => constant+ return “1” return “1” + “2”

4 constant => scalar return “1” + “2” return argument

5 statement => statements return argument return arguments

6 unconditional => conditional return arguments if(condition)return arguments

7 scalar => array dog [dog, cat]

8 array => container [dog, cat] {dog = “DOG”, cat = “CAT”}

9 statement => recursion a + b a + recursion

10 conditional => loop if(condition) while(condition)

11 recursion => tail recursion a + recursion recursion

12 expression => function today - birthday CalculateAge()

13 variable => mutation day var day = 10; day = 11;

14 switch case

Object Calisthenics

◦ Only one level of indentation per method

◦ Don’t use the ELSE keyword

◦ Wrap all primitives and strings

◦ First class collections (wrap all collections)

◦ Only one dot per line

◦ No abbreviations

◦ Keep all entities small [10 files per package, 50 lines per class, 5 lines per method, 2 arguments per

method]

◦ No classes with more than two instance variables

◦ No public getters/setters/properties

Object Calisthenics

Heuristics

◦ Tell don’t ask

◦ Tell the object what you want and let it figure out how to do it

◦ As the caller you should not be making decisions based on the state of the called object that result in you then

changing the state of that object, that smells of a leaky abstraction

◦ Law of Demeter

◦ Each unit should have only limited knowledge about other units: only units "closely" related to the current unit.

◦ Each unit should only talk to its immediate friends; don't talk to strangers.

Questions and

Discussions

