
NEVER UNDERESTIMATE

THE SIMPLICITY

1 / 16

Three laws of TDD

 Failing test (for the right reason) RED

 Code to pass the test (just sufficient, fake or obvious) GREEN

 Refactor (generalize) just as much as you really test TRIANGULATION

2 / 16

Triangulation is hard

 Think that you only know the public API of your Code

 Using multible indirect test to assert it behaves how you thought it should

Do not test the inner implementation

 The design should become obvious, when it repeats or getting redundant

 Be careful in adding new behavior before you tested the existing behavior

 Think about boundaries

3 / 16

TDD in Mob or Pair: Keep slow to arrive fast

 Nobody is left behind (community cohesion)

 Take initiative when partner is stuck, what lowers frustration

 Learning habits from your mates

 Help to find a «ubiquitous language»

 Following the same «standards/practices»

 Duplication as an intermediate step (rule of three)

https://www.moviepilot.de/movies/momo-2

4 / 16

Great Habits: F.I.R.S.T

 Fast: so you dont mind to run the test often

 Isolated: the order of test doesn’t matter

 Repeatable: same Result

 Self validating: red or green – no interpretation

 Timely: written before the code

https://schnaeppchenfuchs.com/freizeit/carrera-digital-132-
start-set-fuer-199e-carrera-bahn-mit-f1-boliden

5 / 16

Great habits

 Start from the assertion

 Test structure Arrange Act Assert

 Names TestclassShould

 doSomethingThatIsExpected  lead to a readable «high level documentation»

 Fail for the right reason

 Meaningful feedback of tests

 Write the simplest code to pass the test

 Rule of three to tackle duplication

6 / 16

Thougths about Tests in Junit 5

 Why should i use this? @DisplayName(“it does Something I expected")

 @TestMethodOrder(OrderAnnotation.class)

 @Test
@Order(1)
void yourFirstTest(){…

 @Test
@Order(2)
void yourSecondTest(){…

 @TestMethodOrder(MethodName.class)

 @TestMethodOrder(Random.class)

 @TestMethodOrder(CustomImplementation.class)
 CustomImplementation implements MethodOrderer

7 / 16

Unit Test Naming Conventions

 MethodName_StateUnderTest_ExpectedBehavior / isAdult_AgeLessThan18_False
MethodName_ExpectedBehavior_StateUnderTest

 Method name changes? Length?

 test[Feature being tested] / just the Feature testIsNotAnAdultIfAgeLessThan18

 Should_ExpectedBehavior_When_StateUnderTest Should_ReturnFalse_When_AgeLessThan18

 When_StateUnderTest_Expect_ExpectedBehavior When_AgeLessThan18_Expect_isAdultAsFalse

8 / 16

TPP: Transformation Priority Premise (shortened)

 Constant 1

 Scalar argument 1+2

 Statement arguments 5+3-4

 Conditional If(condition) return argument

 Array [«dog», «cat»]

https://transformers.fandom.com/de/wiki/Bumblebee_(Movie)

9 / 16

TPP: Transformation Priority Premise (shortened)

 Container {Dog, Cat}

 Loop/recursion for(){} while(){}

 Function calculate()

 Mutation Variable

 String truth = «is yours»

 truth = «has changed»

 Switch case switch(){ case A: … break; case B: … break;default: …}

https://transformers.fandom.com/de/wiki/Optimus_Prime_(Movie)

10 / 16

Rules of the Mob

 Respect, don’t harm

 Be careful with jokes and «running gags»

 Mind to get peoples solutions or

intentions  maybe it leads to the same

or even better refactorings (be patient)

 Important Setup: Driver, Navigator, Mob,

Timer

https://www.thatmomentin.com/gangs-of-new-york-2002-and-the-fight-at-five-points-

moment/the-priest-gangs-of-new-york/

11 / 16

Object Calisthenics

 One level of intention per method

 Don’t use ELSE

 Wrap all primitives and strings

 Wrap all collections to Classes

 One dot per line

https://en.wikipedia.org/wiki/Popeye

12 / 16

Object Calisthenics

 No abbreviations WTF YOLO

 Keep all entities small: packages, lines per class/method, arguments per

mehtods

 A class has in maximum two instance variables

 No public getters/setters/properties

https://justenglish.me/2012/07/11/dont-panic/

13 / 16

Mob: What is the obvious implementation

 Go for what the mob understands, refactor together

 its hard to name the test, what is the intention of your next code step

https://www.taipeitimes.com/News/feat/archives/2003/08/22/2003064830

14 / 16

Questions

https://www.reddit.com/r/nomanshigh/comments/6gh7cc/i_build_a_super_computer_in_no_mans_sky_finally_i/

15 / 16

Thank you for your attention

Res Gilgen

resgilgen@gmail.ch

Resources

Agile Technical Practices Distilled

(Pedro Moreira Snatos, Marco Consolaro, Alessandro Di Gioia)

Alcor Academy Lessons

(Marco Consolaro, Alessandro Di Gioia)

Junit Execution Order
https://mkyong.com/junit5/junit-5-test-execution-order/

https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-execution-order-methods

Unit Test Naming Conventions
https://dzone.com/articles/7-popular-unit-test-naming

https://www.iconfinder.com/icons/87436/idea_icon

https://www.pngrepo.com/svg/127141/atomic-theory

16 / 16

mailto:resgilgen@gmail.ch
https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-execution-order-methods

