
TDD: TRYING TO WALK

0 1 . 1 0 . 2 0 2 1

ATTEMPT TO IMPLEMENT THE “BOWLING KATA”

2

Bowling Game Scoring
Write a program to calculate the score of a Ten-Pin Bowling

Input: a string representing a bowling game score

Output: the score as integer

Examples:

Scoring Rules (short):
Å Each game consists of ten “frames” with up to two tries
Å If the first ball in a frame knocks down all ten pins it is

called a “strike” and the frame is over (“X”)
Å Score is ten plus number of pins in next two tries

Å If the second ball in a frame knocks down all ten pins it
is called a “spare” (“/”)
Å Score is ten plus number of pin in next try

Å If not all pins are knocked down in a frame the score is
the number of pins down

Å Bonus tries when last frame ends with “strike” or
“spare” regarding to the scoring rules of “strike” and
“spare”

START WITH A TEST
What do we want to test?

üWe want to test behaviour

Á BowlingGameScoreCalculatorShould…

Á …calculateScoreFromGivenGame

ü Assert that the calculated score is the expected
from the example(s)

What shall the software do?

ü Calculate the score for a given game

ü The behaviour is the API

ü 1 public interface with input «game» as String
and «score» as Integer

üWe can make one parameterized test, because
for every example the score calculating rules stay
the same

üWe did not write any code but looking at the
requirements we test any behaviour the
program should have

3

WHAT DO WE ACHIEVE FROM THE TEST?

4

ÅClear “given”, “when”, “then” and it is readable like simple text:
Å BowlingGameScoreCalculatorShould…
Å …calculateScoreFromGivenGame
Å Givena played game
ÅWhencalled to calculate
Å Thenreturn the (correct) score

ÅWhen the implementation changes…
Å Example: the rules of calculating the score change
ü The test does not have to change!
ü If the API does not change, the caller does not change

Å Example: using an extern library instead of our code
ü Just the call to production code and maybe the input

changes
ü The structure of the test does not have to change!

CHECKING FOR TEST SMELLS

Å Not testing anything -> testing the score calculation

Å Test too many things at once -> only testing the score calculation

Å Too many assertions -> only one

Å Assertions mixed with actions -> only one action seperated from one assertion

Å Testing or containing irrelevant information -> only one object is created and one method is called

Å Conditional test logic -> no conditions in test

Å Test too long -> just one line for given, when, then

Å Excessive setup -> no setup necessary but the instance creation for calling the
calculator

HOW TO GO ON?

Alcor Training: Lesson1-Introduction to Classic TDD

WRITE A RED TEST

Introduce first example

Make the test fail for the right reason

ü Create BowlingGameScoreCalculator and
method calculateScore

ü Return 0 to make it fail for the right reason (no
implementation)

7

MAKE THE TEST GREEN

Write just enough code to make the test green

ü Fake implementation

ü Obvious implementation

ü Split the input String at the “|”

ü Count the X

ü Because we know every one of the 10 frames will
be scored 30, we can add 30 for every frame

ü Due to the delimiter “|” the extra rolls are
ignored

8

REFACTORING

OBJECT CALISTHENICS RULES TRANSFORMATION PRIORITY PREMISE

ÅWrap all primitives and Strings
ü “X” (and later “/” or “-”) can be wrapped in Enum

or Class
ü String-Array “frames” to Collection of type

“Frame”
ü Wrap Delimiter “|” and “||” for the extra tries?

Å Only one level of indentation
ü If-condition can move to “Frame”
üWe get a method call for the condition,

ok? (-> TPP)

ÅWhen moving condition to “Frame”-class
ü Condition: 6; Function: 12

ü Does this make it worse?

TRIANGULATION INSTEAD OF
REFACTORING

This is what can happen after triangulate the next 2
examples without refactoring :D

ü Object Calesthenics Rules

ü Don’t use ELSE keyword

ü TPP:

ü 2 conditions(6)in loop(10)and a nested loop(10)
in ELSE with another condition(6)in it

ü Can’t even calculate the TPP score easily
@.@

ü Refactor it!!!

10

AFTER REFACTORING

“Frames” is parsing the String input

ü Calculator does not parse, just calculate final
score

“Frame” has the responsibility to calculate the
score for every single frame

ü Logic of what is “strike” and so on is capsuled in
“Frame”

ü Frame-Logic is in Frame-Domain

Actual number of frames played (10) does not
have to be known

üworks by rule change (e.g. 15 frames per game)

Logic of additional tries (strikes, spares) is capsuled
in “Frame “

ü “Frame” can be replaced by any other unit

ü Test does not care

11

QUESTIONS (FROM ME)

Is the TPP score too high?
üScalar (int score) -> 4
üFunction (buildFrames, incrementScore) -> 24
üMutation (score = …) -> 13
üLoop (Frame frames : frames) -> 10

üDoes this multiply the score of function and mutation?

MERCI

Looking forward to next module
And

Have a great weekend!

Let’s practice and become competent in what we are doing!

