
TDD
approach
What if the code already exists...

Anastasia Vasilyeva

anavasilyeva@gmail.com

15-09-2021



Problem
TDD is great if you want to start to devepole a

new feature.

In real business cases, we are confronted with the

fact that the code already exists. The functionality

has already been implemented. And the current

task is to make some changes or add new

functionality.

How do we follow the principles of TDD in this

case?



Business�Case
We need to change an existing global logic - mapping the data of

letter recipients and changing the output on the document.

More than 30 components use this logic.

There are no direct tests for global logic. There is only a set of

indirect tests in dependent components - integration tests. 

The test coverage is unknown.

 



Business
stakeholder
expectations:

DEV�team
expectations

Expectations

�to�add�a�new
feature

understand�how�existing
code�works

add�good�test�coverage
refactor�old�code�(if�needed)

add�new�functionality



Step�1�-�Freeze�the�existing�logic�in�a�test
As a first step, we decided to write a test for the existing logic. We

didn't know exactly how the code worked. Based on TDD principles, we

wrote a test for business logic (not the implementation).

In our case the Test must be green at this step (it tests the old logic).

Step�2�-�Write�new�Test�for�a
feature/change

At this step we write a new test for a new change. It must be red.

Step�3�-�Implement�a�change�
Implement a new feature in the existing code.

Check the Test from step 2 - it must be green.

If we changed the existing logic, that the test from step 1 must be

red.

Delete the test 1 if not needed.



Step�4�-�Integration�Test
As we have changed the global logic on which many components

depend, we need to check at this point how the components have

reacted to the change. Existing integration tests must be red.

Step�5�-�Update�integration�tests

Update integration tests with a new logic. Check if the logic works

properly for depedent components.

Step�5�-�Refactor�and�control�the�tests



Win�1

We understood how the logic of the global

component works and were able to modify it.

Win�2
Thanks to the new tests, we are confident that

we didn't break something else.

Win�3
We optimised the code and broke one big

function into smaller understandable functions

Win�4

Development in Mob - better knowledge transfer.



I'm�excited�about�the�next
part�of�the�course!�

Questions?
Discussion...

Tha
nks

!�


