Test doubles

Isn’t everything a mock?

Robson da Silva (sc.robson@gmail.com)

ypes of double

e Dummy
o Filler objects that are not really used in the tests
e F[ake
o Objects that implement a shortcut such as an in memory database
e Stub
o Objects implemented with canned answers for the tests
e Mock
o Objects implemented with expectations for the calls made to it
® Spy

o Actually stubs but also records data about the calls made to it

ypes of double (focus)

e Stub

o Objects implemented with canned answers for the tests

o Mostly when testing state
e Mock

o Objects implemented with expectations for the calls to be made to it

o Mostly when testing behavior

\ Asserting state

[Fact]
@ | 0 references
public void ShouldSubtractStockWhenOrderCompleted StateCheck()

{
: var warehouse = new Warehouse();
warehouse . Add (PRODUCT 1, 5@);

var order = new Order(PRODUCT_1, 10);
order.Complete(warehouse);

Assert.Equal(4@, warehouse.GetStock(PRODUCT 1));

\ Asserting behavior

[Fact]
@ | 0 references
public void ShouldSubtractStockWhenOrderCompleted BehaviorCheck()

{
' var warehouseMock = new Mock<Warehouse>();
warehouseMock.Setup(x => x.HasStock(PRODUCT_ 1, 18)).Returns(true);

var order = new Order(PRODUCT_1, 10);
order.Complete(warehouseMock.Object);

warehouseMock.Verify(x => x.HasStock(PRODUCT 1, 10), Times.Once);
warehouseMock.Verify(x => x.Remove(PRODUCT_1, 10), Times.Once);

\ Classicist vs Mockist?

Let’s not go there but...

e Classicist

o Will prefer to use the real objects when possible

o new Warehouse()
e Mockist

o Will prefer to mock all the dependencies out of the scope of the test

o new Mock<Warehouse>()

\ Moving on

e Send anemail after order is completed

o Howto testif it was called correctly when IMailSender doesn’t hold state?

2 references | @ 2/2 passing

public void Complete(Warehouse warehouse, IMailSender mailSender)

{
R ¢ if (warehouse.HasStock(Product, Quantity))
{
_ . warehouse.Remove(Product, Quantity);
ginrizny. mailSender.Send(Email);
¥

\ Stub It!

0 references

public class MailSenderStub : IMailSender
{

private List<string> emailsSent = new List<string>();

2 references
public void Send(string recipient)
{

emailsSent.Add(recipient);

0 references
public int CheckAmountSent(string recipient)

:

return emailsSent.Where(x => x == recipient).Count();

\ Stub It!

[Fact]

@ | 0 references
public void ShouldSendAnEmailWhenOrderCompleted Stub()

{

var mailerStub = new MailSenderStub();

var order = new OrderWithEmail(PRODUCT 1, 10, "test@gmail.com");
order.Complete(_warehouse, mailerStub);

Assert.Equal(1l, mailerStub.CheckAmountSent(“test@gmail.com”));

\ Or mock I1t!

[Fact]
@ | 0 references
public void ShouldSendAnEmailWhenOrderCompleted Mock()

:

var mailerMock = new Mock<IMailSender>();

var order = new OrderWithEmail(PRODUCT_ 1, 10, "test@gmail.com");
order.Complete(_warehouse, mailerMock.Object);

mailerMock.Verify(x => x.Send(“"test@gmail.com"), Times.Once);

Conclusions

e Both will have advantages

e Thereisnoright or wrong

e Itdependsonwhatis being tested
o State
o Behavior

e |tdepends also on your approach
o Classicist
o Mockist

Thank you

Robson da Silva (sc.robson@gmail.com)

Source: https://martinfowler.com/articles/mocksArentStubs.htmi

