
Through the lens of modularity

What is
behavior?

A module is

● A building block
● Composable
● Hides information

i.e.

A composable unit with an interface
contract.

The Behavior is the API
the API is the behavior

We decide what exactly goes in the API,
because we write the code *

We can choose to make that part PUBLIC
and known, or… to HIDE it.

* Sometimes behavior isn’t in the code.

A spec is

A description of behavior.

A test is a runnable specification.

A test that tests something accidental is
unnecessarily bloating the spec.

Of every test/spec
you can ask yourself

Is it essential to the problem? Or is it
accidental?

Am I adding to the spec? Or am I
subtracting in order to reveal the spec?

Bowling Kata

Are the scoring rules
the behavior?

Perhaps…

Or, perhaps, it’s the set of all known
inputs and outputs.

But good luck writing a test for that…

IMHO the human readable spec is not the
final spec, but it does lead you to one.

expect(bowlingScore("--|--|--|--|--|--|--|--|--|--||--")).toBe(0)

“The characters after the || are bonus balls.”

In terms of modularity: We’re “exposing” (no longer hiding)
this information.

Not part of the “human readable” spec. Should we add it?

expect(bowlingScore("X|--|--|--|--|--|--|--|--|--||")).toBe(10)

expect(bowlingScore("X|11|1-|--|--|--|--|--|--|--||")).toBe(15)

V.S.

If the first ball in a frame knocks down all ten pins, this
is called a "strike". The frame is over.

The score for the frame is ten plus the total of the pins
knocked down in the next two balls.

Both tests are technically right, but which best models the (total) behavior?
Too “granular”?

Decision deferment

If the API doesn’t change, the
caller doesn’t have to change
The holy grail of software design: easy change

